Open Access
Research
(Published
online: 21-11-2016)
19.
Chronic exposure to indoxacarb and pulmonary
expression of toll-like receptor-9 in mice -
Sandeep Kaur, C. S. Mukhopadhyay and R. S. Sethi
Veterinary World, 9(11): 1282-1286
doi:
10.14202/vetworld.2016.1282-1286
Sandeep Kaur:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana - 141 004, Punjab, India;
sndp4482@gmail.com
C. S. Mukhopadhyay:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana - 141 004, Punjab, India;
csmbioinfo@gmail.com
R. S. Sethi:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana - 141 004, Punjab, India;
rs.sethi@usask.ca
Received: 25-04-2016, Accepted: 14-10-2016, Published online:
21-11-2016
Corresponding author:
R. S. Sethi, e-mail: rs.sethi@usask.ca
Citation:
Kaur S, Mukhopadhyay CS, Sethi RS (2016) Chronic exposure to
indoxacarb and pulmonary expression of toll-like receptor-9 in
mice,
Veterinary World, 9(11):
1282-1286.
Abstract
Aim:
Chronic exposure to indoxacarb and pulmonary expression of
toll-like receptor 9 (TLR-9) in mice.
Materials and Methods:
In this study, healthy male Swiss albino mice (n=30) aging 8-10
weeks were used to evaluate TLR-9 expression in lungs of mice
following indoxacarb exposure with and without lipopolysaccharide
(LPS). Indoxacarb was administered orally dissolved in groundnut
oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from
each group were challenged with LPS/normal saline solution at 80
μg/animal. The lung tissues were processed for real time and
immunohistochemical studies.
Results:
LPS resulted increase in fold change m-RNA expression level of
TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and
in combination with LPS resulted 16.21-fold change and 29.4-fold
change increase in expression of TLR-9 m-RNA, respectively, as
compared to control. Similarly, indoxacarb (2 mg/kg) alone or in
combination with LPS also altered TLR-9 expression. Further at
protein level control group showed minimal expression of TLR-9 in
lungs as compare to other groups, however, LPS group showed
intense positive staining in bronchial epithelium as well as in
alveolar septal cells. Indoxacarb at both doses individually
showed strong immuno-positive reaction as compare to control,
however when combined with LPS resulted intense staining in airway
epithelium as compare to control.
Conclusion:
Chronic oral administration of indoxacarb for 90 days (4 and 2
mg/kg) alters expression of TLR-9 at m-RNA and protein level and
co-exposure with LPS exhibited synergistic effect.
Keywords:
indoxacarb, lipopolysaccharide, lungs, mice, toll-like receptor-9.
References
1. US EPA. (1996) Pesticide Industry Sales and Usage: Market
Estimates. Available from: http://link.lvccld.org/portal/Pesticide-industry-sales-and-usage-Online-/X8jiI9zvgxY/.
Accessed on 12-11-2015. |
|
2. Banerjee, B.D., Koner, B.C. and Ray, A. (1996)
Immunotoxicity of pesticides: Perspectives and trends. Indian
J. Exp. Biol., 34(8): 723-733.
PMid:8979476 |
|
3. Bolognesi, C. (2003) Genotoxicity of pesticides: A review
of human biomonitoring studies. Mutat. Res., 543: 251-272.
https://doi.org/10.1016/S1383-5742(03)00015-2 |
|
4. Marrs, T.C. and Dewhurst, I.C. (2012) Toxicology of some
insecticides not discussed elsewhere. In: Marrs, T.C., editor.
Toxicology of Insecticides. RSC Publishing, Cambridge, UK.
p288-301.
https://doi.org/10.1039/9781849733007-00288 |
|
5. US EPA. (2007). Indoxacarb; Pesticide tolerance. In: Office
of Prevention Pesticides and Toxic Substances, editor. Federal
Registrar, Available from https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-067710_30-Oct-10.pdf.
Accessed on 10-10-2015.. |
|
6. Zhou, B., Zhou, H., Ling, S., Guo, D., Yan, Y., Zhou, F.
and Wu, Y. (2011) Activation of PAR2 or/and TLR4 promotes
SW620 cell proliferation and migration via phosphorylation of
ERK1/2. Oncol. Rep., 25: 503-511.
https://doi.org/10.3892/or.2010.1077
PMid:21152870 |
|
7. Rutz, M., Metzger, J., Gellert, T., Luppa, P., Lipford, G.B.,
Wagner, H. and Bauer, S. (2004) Toll-like receptor 9 binds
single-stranded CpG-DNA in a sequence- and pH-dependent
manner. Eur J. Immunol., 34: 2541-2550.
https://doi.org/10.1002/eji.200425218
PMid:15307186 |
|
8. Krieg, A.M. (2002) CpG motifs in bacterial DNA and their
immune effects. Ann. Rev. Immunol., 20: 709-760.
https://doi.org/10.1146/annurev.immunol.20.100301.064842
PMid:11861616 |
|
9. Schneberger, D., Caldwell, S., Kanthan, R. and Singh, B.
(2013) Expression of toll-like receptor 9 in mouse and human
lungs. J. Anat., 222: 495-503.
https://doi.org/10.1111/joa.12039
PMid:23521717 PMCid:PMC3633339 |
|
10. Schwartz, D.A., Quinn, T.J., Thorne, P.S., Sayeed, S., Yi,
A.K. and Krieg, A.K. (1997) CpG motifs in bacterial DNA cause
inflammation in the lower respiratory tract. J. Clin. Invest.,
100: 68-73.
https://doi.org/10.1172/JCI119523
PMid:9202058 PMCid:PMC508166 |
|
11. Knuefermann, P., Baumgarten, G., Koch, A., Schwederski,
M., Velten, M., Ehrentraut, H., Mersmann, J., Meyer, R., Hoeft,
A., Zacharowski, K. and Grohe, C. (2007) CpG oligonucleotide
activates Toll-like receptor 9 and causes lung inflammation in
vivo. Respir. Res., 8: 72-80.
https://doi.org/10.1186/1465-9921-8-72
PMid:17925007 PMCid:PMC2173891 |
|
12. Parilla, N.W., Hughes, V.S., Lierl, K.M., Wong, R.W. and
Page, K. (2006) CpG DNA modulates interleukin 1β-induced
interleukin-8 expression in human bronchial epithelial
(16HBE14o-) cells. Respir. Res., 7: 84-92.
https://doi.org/10.1186/1465-9921-7-84
PMid:16740161 PMCid:PMC1489942 |
|
13. Schwartz, D.A., Wohlford-Lenane, C.L., Quinn, T.J. and
Krieg, A.M. (1999) Bacterial DNA or oligonucleotides
containing unmethylated CpG motifs can minimize
lipopolysaccharide-induced inflammation in the lower
respiratory tract through an IL-12-dependent pathway. J.
Immunol., 163: 224-231.
PMid:10384120 |
|
14. West, A.P., Shadel, G.S. and Ghosh, S. (2011) Mitochondria
in innate immune responses. Nat. Rev. Immunol., 11: 389-402.
https://doi.org/10.1038/nri2975
PMid:21597473 PMCid:PMC4281487 |
|
15. Michel, O. (2000) Systemic and local airways inflammatory
response to endotoxin. Toxicology, 152: 25-30.
https://doi.org/10.1016/S0300-483X(00)00288-2 |
|
16. Michel, O., Dentener, M., Corazza, F., Buurman, W. and
Rylander, R. (2001) Healthy subjects express differences in
clinical responses to inhaled lipopolysaccharide that are
related with inflammation and with atopy. J. Allergy Clin.
Immunol., 107: 797-804.
https://doi.org/10.1067/mai.2001.114249
PMid:11344345 |
|
17. Duramad, P., Tager, I.B., Leikauf, J., Eskenazi, B. and
Holland, N.T. (2006) Expression of Th1/Th2 cytokines in human
blood after in vitro treatment with chlorpyrifos, and its
metabolites, in combination with endotoxin LPS and allergen
Der p1. J. Appl. Toxicol., 26(5): 458-465.
https://doi.org/10.1002/jat.1162
PMid:16871525 |
|
18. Nagajyothi, F., Desruisseaux, M.S., Machado, F.S., Upadhya,
R., Zhao, D., Schwartz, G.J., Teixeira, M.M., Albanese, C.,
Lisanti, M.P., Chua, S.C.Jr., Weiss, L.M., Scherer, P.E. and
Tanowitz, H.B. (2012) Response of adipose tissue to early
infection with Trypanosoma cruzi (Brazil strain). J. Infect.
Dis., 205(5): 830-840.
https://doi.org/10.1093/infdis/jir840
PMid:22293433 PMCid:PMC3274374 |
|
19. Guo, S., Al-Sadi, R., Said, H.M. and Ma, T.Y. (2013)
Lipopolysaccharide causes an increase in intestinal tight
junction permeability in vitro and in vivo by inducing
enterocyte membrane expression and localization of TLR-4 and
CD14. Am. J. Pathol., 182(2): 375-387.
https://doi.org/10.1016/j.ajpath.2012.10.014
PMid:23201091 PMCid:PMC3562736 |
|
20. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of
relative gene expression data using real-time quantitative PCR
and the 2(-Delta Delta C (T) method. Methods, 25(4): 402-408.
https://doi.org/10.1006/meth.2001.1262
PMid:11846609 |
|
21. Pandit, A.A., Choudhary, S., Ramneek, Singh, B. and Sethi,
R.S. (2016) Imidacloprid induced histomorphological changes
and expression of TLR-4 and TNFα in lung. Pest. Biochem.
Physiol., 131: 9-17.
https://doi.org/10.1016/j.pestbp.2016.02.004
PMid:27265821 |
|
22. Ben, D.F., Yu, X.Y., Ji, G.Y., Zheng, D.Y., Lv, K.Y., Ma,
B. and Xia, Z.F. (2012) TLR4 mediates lung injury and
inflammation in intestinal ischemia-reperfusion. J. Surg.
Res., 174(2): 326-333.
https://doi.org/10.1016/j.jss.2010.12.005
PMid:21392794 |
|
23. Aharonson-Raz, K., Lohmann, K.L., Townsend, H.G., Marques,
F. and Singh, B. (2012) Pulmonary intravascular macrophages as
proinflammatory cells in heaves, an asthma-like equine
disease. Am. J. Physiol. Lung. Cell. Mol. Physiol., 303(3):
L189-L198.
https://doi.org/10.1152/ajplung.00271.2011 |
|
24. Hoppstadter, J., Diesel, B., Zarbock, R., Breinig, T.,
Monz, D., Koch, M., Meyerhans, A., Gortner, L., Lehr, C.M.,
Huwer, H. and Kiemer, A.K. (2010) Differential cell reaction
upon toll-like receptor 4 and 9 activation inhuman alveolar
and lung interstitial. Respir. Res., 11: 124.
https://doi.org/10.1186/1465-9921-11-124
PMid:20843333 PMCid:PMC2949727 |
|
25. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S.,
Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K.
and Akira, S. (2000) A toll-like receptor recognizes bacterial
DNA. Nature, 408: 740-745.
https://doi.org/10.1038/35047123
PMid:11130078 |
|
26. Cardon, L.R., Burge, C., Clayton, D.A. and Karlin, S.
(1994) Pervasive CpG suppression in animal mitochondrial
genomes. Proc. Natl. Acad. Sci. USA., 91: 3799-3803.
https://doi.org/10.1073/pnas.91.9.3799
PMid:8170990 PMCid:PMC43669 |
|
27. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T.,
Junger, W., Brohi, K., Itagaki, K. and Hauser, C.J. (2010)
Circulating mitochondrial DAMPs cause inflammatory responses
to injury. Nature, 464: 104-107.
https://doi.org/10.1038/nature08780
PMid:20203610 PMCid:PMC2843437 |
|
28. Yeo, S.J., Yoon, J.G., Hong, S.C. and Yi, A.K. (2003) CpG
DNA induces self and cross-hyporesponsiveness of RAW264.7
cells in responseto CpG DNA and lipopolysaccharide:
Alterations in IL-1 receptor associated kinase expression. J.
Immunol., 170: 1052-1061.
https://doi.org/10.4049/jimmunol.170.2.1052
PMid:12517973 |
|
29. Jozsef, L., Khreiss, T. and Filep, J.G. (2004) CpG motifs
in bacterial DNA delay apoptosis of neutrophil granulocytes.
FASEB J., 18: 1776-1778.
https://doi.org/10.1096/fj.04-2048fje |
|
30. Platz, J., Beisswenger, C., Dalpke, A., Koczulla, R.,
Pinkenburg, O., Vogelmeier, C. and Bals, R. (2004) Microbial
DNA induces a host defense reaction of human respiratory
epithelial cells. J. Immunol., 173(2): 1219-123.
https://doi.org/10.4049/jimmunol.173.2.1219 |
|
31. Demedts, I.K., Bracke, K.R., Maes, T., Joos, G.F. and
Brusselle, G.G. (2006) Different roles for human lung
dendritic cell subsets inpulmonary immune defense mechanisms.
Am. J. Respir. Cell Mol. Biol., 35: 387-393.
https://doi.org/10.1165/rcmb.2005-0382OC
PMid:16627825 |
|
32. Schneberger, D., Caldwell, S., Suri, S.S. and Singh, B.
(2009) Expression of toll-like receptor 9 in horse lungs.
Anat. Rec., 292: 1068-1077.
https://doi.org/10.1002/ar.20927
PMid:19548205 |
|
33. Schneberger, D., Lewis, D., Caldwell, S. and Singh, B.
(2011b) Expression of toll-like receptor 9 in lungs of pigs,
dogs and cattle. Int. J. Exp. Pathol., 92: 1-7.
https://doi.org/10.1111/j.1365-2613.2010.00742.x
PMid:21044185 PMCid:PMC3052751 |
|
34. Nakadai, A., Li, Q. and Kawada, T. (2006) Chlorpyrifos
induces apoptosis in human monocyte cell line U937.
Toxicology, 224(3): 202-209.
https://doi.org/10.1016/j.tox.2006.04.055
PMid:16787693 |
|
35. Kiemer, A.K., Senaratne, R.H., Hoppstadter, J., Diesel,
B., Riley, L.W., Tabeta, K., Bauer, S., Beutler, B. and Zuraw,
B.L. (2008) Attenuated activation of macrophage TLR9 by DNA
from virulent mycobacteria. J. Innate Immun., 1: 29-45.
https://doi.org/10.1159/000142731
PMid:20375564 |
|
36. Merkowsky, K., Sethi, R.S., Gill, J.P.S. and Singh, B.
(2016) Fipronil induces lung inflammation in vivo and cell
death in vitro. J. Occup. Med. Toxicol., 11: 10.
https://doi.org/10.1186/s12995-016-0102-0
PMid:26997970 PMCid:PMC4797133 |
|
37. Schaumann, F., Müller, M., Braun., A., Luettig, B., Peden,
D.B., Hohlfeld, J.M. and Krug, N. (2008) Endotoxin augments
myeloid dendritic cell influx into the airways in patients
with allergic asthma. Am. J. Respir. Crit. Care Med., 177(12):
1307-1313.
https://doi.org/10.1164/rccm.200706-870OC
PMid:18388357 PMCid:PMC2427055 |
|
38. Ilmarinen, P., Hasala, H., Sareila, O., Moilanen, E. and
Kankaanranta, H. (2009) Bacterial DNA delays human eosinophil
apoptosis. Pulm. Pharmacol. Ther., 22: 167-176.
https://doi.org/10.1016/j.pupt.2008.11.012
PMid:19073274 |
|