Open Access
Research
(Published
online: 10-11-2016)
9.
Biocomputational analysis of evolutionary
relationship between toll-like receptor and nucleotide-binding
oligomerization domain-like receptors genes -
Rabia Bhardwaj, Chandra Shekhar Mukhopadhyay, Dipak Deka, Ramneek
Verma, P. P. Dubey and J. S. Arora
Veterinary World, 9(11): 1218-1228
doi:
10.14202/vetworld.2016.1218-1228
Rabia Bhardwaj:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana, Punjab, India;
bhardwajrabia@gmail.com
Chandra Shekhar Mukhopadhyay:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana, Punjab, India; csmbioinfo@gmail.com
Dipak Deka:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana, Punjab, India; deepakdeka@gmail.com
Ramneek Verma:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana, Punjab, India; ramneek.verma@gmail.com
P. P. Dubey:
Department of Animal Genetics and Breeding, Guru Angad Dev
Veterinary and Animal Sciences University, Ludhiana, Punjab,
India; prakashagb@gmail.com
J. S. Arora:
School of Animal Biotechnology, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana, Punjab, India; drarora2003@gmail.com
Received: 03-05-2016, Accepted: 01-10-2016, Published online:
10-11-2016
Corresponding author:
Chandra Shekhar Mukhopadhyay, e-mail: csmbioinfo@gmail.com
Citation:
Bhardwaj R, Mukhopadhyay CS, Deka D, Verma R, Dubey PP, Arora JS
(2016) Biocomputational analysis of evolutionary relationship
between toll-like receptor and nucleotidebinding oligomerization
domain-like receptors genes,
Veterinary World, 9(11):
1218-1228.
Abstract
Aim:
The active domains (TIR and NACHT) of the pattern recognition
receptors (PRRs: Toll-like receptors [TLRs] and nucleotide-binding
oligomerization domain [NOD]-like receptors [NLR], respectively)
are the major hotspots of evolution as natural selection has
crafted their final structure by substitution of residues over
time. This paper addresses the evolutionary perspectives of the
TLR and NLR genes with respect to the active domains in terms of
their chronological fruition, functional diversification, and
species-specific stipulation.
Materials and Methods:
A
total of 48 full-length cds (and corresponding peptide) of the
domains were selected as representatives of each type of PRRs,
belonging to divergent animal species, for the biocomputational
analyses. The secondary and tertiary structure of the taurine TIR
and NACHT domains was predicted to compare the relatedness among
the domains under study.
Results:
Multiple sequence alignment and phylogenetic tree results
indicated that these host-specific PRRs formed entirely different
clusters, with active domains of NLRs (NACHT) evolved earlier as
compared to the active domains of TLRs (TIR). Each type of TLR or
NLR shows comparatively less variation among the animal species
due to the specificity of action against the type of microbes.
Conclusion:
It can be concluded from the study that there has been no positive
selection acting on the domains associated with disease resistance
which is a fitness trait indicating the extent of purifying
pressure on the domains. Gene duplication could be a possible
reason of genesis of similar kinds of TLRs (virus or bacteria
specific).
Keywords:
bioinformatics, domain, evolution, nucleotide-binding
oligomerization domain-like receptors, selection pressure,
toll-like receptor.
References
1. Janeway, C.A. and Medzhitov, R. (2002) Innate immune
recognition. Annu. Rev. Immunol., 20: 197-216.
https:/doi.org/10.1146/annurev.immunol.20.083001.084359
PMid:11861602 |
|
2. Zhang, Q., Zmasek, C.M. and Godzik, A. (2010) Domain
architecture evolution of pattern-recognition receptors.
Immunogenetics, 62: 263-272.
https:/doi.org/10.1007/s00251-010-0428-1
PMid:20195594 PMCid:PMC2858798 |
|
3. Tan, R., Ho, B., Leung, B.P. and Ding, J.L. (2014) TLR
cross-talk confers specificity to innate immunity. Int. Rev.
Immunol., 33: 443-453.
https:/doi.org/10.3109/08830185.2014.921164
PMid:24911430 PMCid:PMC4266099 |
|
4. Langefeld, T., Mohamed, W., Ghai, R. and Chakraborty, T.
(2009) Toll like receptors and NOD-like receptors: Domain
architecture and cellular signalling. Adv. Exp. Med. Biol.,
653: 48-57.
https:/doi.org/10.1007/978-1-4419-0901-5_4
PMid:19799111 |
|
5. Park, J.H., Kim, Y.G., Shaw, M., Kanneganti, T.D.,
Fujimoto, Y., Fukase, K., Inohara, N. and Nú-ez, G. (2007)
Nod1/RICK and TLR signaling regulate chemokine and
antimicrobial innate immune responses in mesothelial cells. J.
Immunol., 179: 514-221.
https:/doi.org/10.4049/jimmunol.179.1.514
PMid:17579072 |
|
6. Proell, M., Riedl, S.J., Fritz, J.H., Rojas, A.M. and
Schwarzenbacher, R. (2008) The nod-like receptor (NLR) family:
A tale of similarities and differences. PLoS One, 3(4): e2119.
https:/doi.org/10.1371/journal.pone.0002119 |
|
7. Istomin, A.Y. and Godzik, A. (2009) Understanding diversity
of human innate immunity receptors: Analysis of surface
features of leucine-rich repeat domains in NLRs and TLRs. BMC
Immunol., 10(48): 1471-2172.
https:/doi.org/10.1186/1471-2172-10-48 |
|
8. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and
Kumar, S. (2013) MEGA6: molecular evolutionary genetics
analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729.
https:/doi.org/10.1093/molbev/mst197
PMid:24132122 PMCid:PMC3840312 |
|
9. Felsenstein, J. (1981) Evolutionary trees from DNA
sequences: A maximum likelihood approach. J. Mol. Evol.,
17(6): 368-376.
https:/doi.org/10.1007/BF01734359 |
|
10. Nei, M. and Kumar, S. (2000) Molecular Evolution and
Phylogenetics. Oxford University Press, New York. p333. |
|
11. Tamura, K., Nei, M. and Kumar, S. (2011) Prospects for
inferring very large phylogenies by using the neighbor-joining
method. Proc. Natl. Acad. Sci. USA., 101: 11030-11035.
https:/doi.org/10.1073/pnas.0404206101
PMid:15258291 PMCid:PMC491989 |
|
12. Pond, S.L.K., Murrell, B., Fourment, M., Frost, S.D.W.,
Delport, W. and Scheffler, K. (2011) A random effects branch
site model for detecting episodic diversifying selection. Mol.
Biol. Evol., 28: 3033-3043.
https:/doi.org/10.1093/molbev/msr125
PMid:21670087 PMCid:PMC3247808 |
|
13. Areal, H., Abrantes, J. and Esteves, P.J. (2011)
Signatures of positive selection in Toll-like receptor (TLR)
genes in mammals. BMC Evol. Biol., 11(368): 1471-2148.
https:/doi.org/10.1186/1471-2148-11-368 |
|
14. Tian, X., Pascal, G. and Monget, P. (2009) Evolution and
functional divergence of NLRP genes in mammalian reproductive
systems. BMC Evol. Biol., 9(202): 1471-2148.
https:/doi.org/10.1186/1471-2148-9-202 |
|
15. Howe, K., Schiffer, P.H., Zielinski, J., Wiehe, T., Laird,
G.K., Marioni, J.C., Soylemez, O., Kondrashov, F. and Leptin,
M. (2015) Structure and evolutionary history of a large family
of NLR proteins in the zebrafish. Available from: http://www.dx.doi.org/10.1101/022061.
Cited on 07-07-2015. |
|
16. Kaur, J., Mukhopadhyay, C.S., Dhanoa, J.K., Sethi, R.S.
and Arora, J.S. (2015) Expression profiling and in silico
characterization of bubaline Drosha in light of evolution.
Int. J. Adv. Res., 3(11): 2956-2966. |
|
17. Huang, L., Fan, Y., Zhou, Y., Jiang, N., Liu, W.Z., Meng,
Y. and Zeng, L.B. (2015) Cloning, sequence analysis and
expression profiles of toll-like receptor 7 from Chinese giant
salamander Andrias davidianus. Comp. Biochem. Physiol. B.,
184: 52-57.
https:/doi.org/10.1016/j.cbpb.2015.02.006
PMid:25754925 |
|
18. Alcaide, M. and Edwards, S.V. (2011) Molecular evolution
of the toll-like receptor multigene family in birds. Mol.
Biol. Evol., 28(5): 1703-1715.
https:/doi.org/10.1093/molbev/msq351
PMid:21239391 |
|
19. Roach, J.M., Racioppi, L., Jones, C.D. and Masci, A.M.
(2013) Phylogeny of toll-like receptor signaling: Adapting the
innate response. PLoS One, 8(1): e54156.
https:/doi.org/10.1371/journal.pone.0054156 |
|
20. Zhou, X., Lin, Z., Ma, H. (2010) Phylogenetic detection of
numerous gene duplications shared by animals, fungi and
plants. Genome Biol., 11(4): R38.
https:/doi.org/10.1186/gb-2010-11-4-r38 |
|
21. Huang, Y., Temperley, N.D., Ren, L., Smith, J., Li, N. and
Burt, D.W. (2011) Molecular evolution of the vertebrate TLR1
gene family - A complex history of gene duplication, gene
conversion, positive selection and co-evolution. BMC Evol.
Biol., 11(149): 1471-2148.
https:/doi.org/10.1186/1471-2148-11-149 |
|
22. Temperley, N.D., Berlin, S., Paton, I.R., Griffin, D.K.
and Burt, D.W. (2008) Evolution of the chicken toll-like
receptor gene family: A story of gene gain and gene loss. BMC
Genomics, 9(62): 1471-2164.
https:/doi.org/10.1186/1471-2164-9-62 |
|
23. Bhardwaj, R., Brah, G.S., Arora, J., Kaur, S. and
Mukhopadhyay, C.S. (2015) Cloning and molecular
characterization of toll-like receptor 4 (TLR-4) gene in
Indian water buffalo (Bubalus bubalis). Indian Journal of
Animal Sciences, 85(3): 19-24. |
|
24. Dhaliwal, K.K., Arora, J.S., Mukhopadhyay, C.S. and Dubey,
P.P. (2015) In silico characterization of functional
divergence of two cathelicidin variants in Indian sheep. Evol.
Bioinformatics online., 11: 189-196.
PMid:26380546 PMCid:PMC4559185 |
|
25. Singh, J., Mukhopadhyay, C.S., Arora, J.S. and Kaur, S.
(2014) Biocomputational and evolutionary analysis of bubaline
dicer1 enzyme. Asian Aust. J. Anim Sciences., 28(6): 876-887.
https:/doi.org/10.5713/ajas.14.0767
PMid:25925065 PMCid:PMC4412985 |
|