Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 17-09-2016)

11. Differential response of immune-related genes to peptidoglycan and lipoteichoic acid challenge in vitro - Sourabh Sulabh, Bharat Bhushan, Manjit Panigrahi, Ankita Verma, Naseer Ahmad Baba and Pushpendra Kumar

Veterinary World, 9(9): 983-988

 

 

   doi: 10.14202/vetworld.2016.983-988

 

 

Sourabh Sulabh: Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India; sourabhjsr.vtro4@gmail.com

Bharat Bhushan: Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India; bhushan.drbharat@gmail.com

Manjit Panigrahi: Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India; manjit707@gmail.com

Ankita Verma: Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India; ankita.d_verma@yahoo.co.in

Naseer Ahmad Baba: Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India; naseervet@gmail.com

Pushpendra Kumar: Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India; pushpendra64@gmail.com

 

Received: 05-05-2016, Accepted: 01-08-2016, Published online: 17-09-2016

 

Corresponding author: Bharat Bhushan, e-mail: bhushan.drbharat@gmail.com


Citation: Sulabh S, Bhushan B, Panigrahi M, Verma A, Baba NA, Kumar P (2016) Differential response of immune-related genes to peptidoglycan and lipoteichoic acid challenge in vitro, Veterinary World, 9(9): 983-988.



Aim: To study the effect of Staphylococcus aureus cell wall antigens, peptidoglycan (PGN) and lipoteichoic acid (LTA) challenge on immune cells present in bovine peripheral blood mononuclear cells (PBMCs).

Materials and Methods: In this study, efforts have been made to investigate the effects of three combinations (10+10, 20+20 and 30+30 μg/ml) of PGN and LTA obtained from S. aureus. These antigens were used to challenge the bovine PBMCs. After 6 h of incubation quantitative, real time-polymerase chain reaction was used to study toll-like receptor 2 (TLR-2) and major cytokine mRNA expression in bovine PBMC challenged with three different antigen blends.

Results: The results indicated that mRNA level of interferon gamma is influenced by the expression of TLR-2 gene. Tumor necrosis factor-alpha (TNF-α), interleukin 10 (IL-10), and IL-8 genes showed a maximum response at a dose of 10 μg of PGN and 10 μg of LTA challenge per ml of culture medium. The outcome also suggests that both IL-10 and IL-8 followed the expression pattern of TNF-α.

Conclusion: A dose of 10 μg of PGN and 10 μg of LTA per ml of culture medium was found to be most suitable for challenging PBMC.

Keywords: expression, lipoteichoic acid, mastitis, peptidoglycan, peripheral blood mononuclear cell.



1. Varshney, J.P. and Naresh, R. (2004) Evaluation of homeopathic complex in the clinical management of udder diseases of riverine buffaloes. Homeopathy, 93(1): 17-20.
http://dx.doi.org/10.1016/j.homp.2003.11.007
 
2. Watts, J.L. (1988) Etiological agents of bovine mastitis. Vet. Microbiol., 16: 41-66.
http://dx.doi.org/10.1016/0378-1135(88)90126-5
 
3. Von Eiff, C., Peters, G. and Becker, K. (2006) The small-colony variant (SCV) concept - The role of Staphylococcus SCVs in persistent infections. Injury, 37(2): S26-S33.
http://dx.doi.org/10.1016/j.injury.2006.04.006
PMid:16651068
 
4. Tilahun, A.Y., Karau, M., Ballard, A., Gunaratna, M.P., Thapa, A., David, C.S., Patel, R. and Rajagopalan, G. (2014) The impact of Staphylococcus aureus - associated molecular patterns on staphylococcal superantigen-induced toxic shock syndrome and pneumonia. Mediators Inflamm., 2014: 468285.
http://dx.doi.org/10.1155/2014/468285
PMid:25024509 PMCid:PMC4082930
 
5. Dammermann, W., Wollenberg, L., Bentzien, F., Lohse, A. and Lüth, S. (2013) Toll like receptor 2 agonists lipoteichoic acid and PGN are able to enhance antigen specific IFN gamma release in whole blood during recall antigen responses. J. Immunol. Methods, 396(1-2): 107-115.
http://dx.doi.org/10.1016/j.jim.2013.08.004
PMid:23954282
 
6. Mogensen, T.H. (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 22(2): 240-273.
http://dx.doi.org/10.1128/CMR.00046-08
PMid:19366914 PMCid:PMC2668232
 
7. Park, Y.H., Joo, Y.S., Park, J.Y., Moon, J.S., Kim, S.H., Kwon, N.H., Ahn, J.S., Davis, W.C. and Davies, C.J. (2004) Characterization of lymphocyte subpopulations and major histocompatibility complex haplotypes of mastitis-resistant and susceptible cows. J. Vet. Sci., 5(1): 29-39.
PMid:15028883
 
8. Taylor, B.C., Dellinger, J.D., Cullor, J.S. and Stott, J.L. (1994) Bovine milk lymphocytes display the phenotype of memory T cells and are predominantly CD8+. Cell Immunol., 156: 245-253.
http://dx.doi.org/10.1006/cimm.1994.1169
PMid:8200039
 
9. Alnakip, M.E., Quintela-Baluja, M., Böhme, K., Fernández-No, I., Caama-o-Antelo, S., Calo-Mata, P. and Barros-Velázquez, J. (2014) The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J. Vet. Med., 2014: 1.
http://dx.doi.org/10.1155/2014/659801
PMid:26464939 PMCid:PMC4590879
 
10. Lewandowska-Sabat, A.M., Boman, G.M., Downing, A., Talbot, R., Storset, A.K. and Olsaker, I. (2013) The early phase transcriptome of bovine monocyte-derived macrophages infected with Staphylococcus aureus in vitro. BMC Genomics, 14: 891.
http://dx.doi.org/10.1186/1471-2164-14-891
PMid:24341851 PMCid:PMC3878444
 
11. Vinod, N., Oh, S., Park, H.J., Koo, J.M., Choi, C.W. and Kim, S.C. (2015) Generation of a novel Staphylococcus aureus ghost vaccine and examination of its immunogenicity against virulent challenge in rats. Infect. Immun., 83(7): 2957-2965.
http://dx.doi.org/10.1128/IAI.00009-15
PMid:25964469 PMCid:PMC4468543
 
12. Capparelli, R., Nocerino, N., Medaglia, C., Blaiotta, G., Bonelli, P. and Iannelli, D. (2011) The Staphylococcus aureus peptidoglycan protects mice against the pathogen and eradicates experimentally induced infection. PLoS One, 6(12): Article No: e28377.
http://dx.doi.org/10.1371/journal.pone.0028377
 
13. Strandberg, Y., Gray, C., Vuocolo, T., Donaldson, L., Broadway, M. and Tellam, R. (2005) Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine, 31: 72-86.
http://dx.doi.org/10.1016/j.cyto.2005.02.010
PMid:15882946
 
14. Mount, J.A., Karrow, N.A., Caswell, J.L., Boermans, H.J. and Leslie, K.E. (2009) Assessment of bovine mammary chemokine gene expression in response to lipopolysaccharide, lipotechoic acid + peptidoglycan, and CpG oligodeoxynucleotide 2135. Can. J. Vet. Res., 73: 49-57.
PMid:19337396 PMCid:PMC2613597
 
15. Shah, S.M., Kumar, G.V.P., Brah, G.S., Santra, L. and Pawar, H. (2012) differential expression of Th1- and Th2- type cytokines murrah buffalo (Bubalus bubalis) on TLR2 induction by B. Subtilis peptidoglycan. Asian Aust. J. Anim., 25(7): 1021-1028.
http://dx.doi.org/10.5713/ajas.2012.12033
PMid:25049659 PMCid:PMC4092975
 
16. Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 3: 1101-1108.
http://dx.doi.org/10.1038/nprot.2008.73
PMid:18546601
 
17. Wagter, L.C., Mallard, B.A., Wilkie, B.N., Leslie, E.K., Boettcher, P.J. and Dekkers, K.E. (2000) A quantitative approach to classifying Holstein cows based on antibody responsiveness and its relationship to peripartum mastitis occurrence. J. Dairy Sci., 83: 488-498.
http://dx.doi.org/10.3168/jds.S0022-0302(00)74908-3
 
18. Thompson-Crispi, K.A., Hine, B., Quinton, M., Miglior, F. and Mallard, B.A. (2012) Short communication: Association of disease incidence and adaptive immune response in Holstein dairy cows. J. Dairy Sci., 95: 3888-3893.
http://dx.doi.org/10.3168/jds.2011-5201
 
19. Thompson-Crispi, K.A., Miglior, F. and Mallard, B.A. (2013) Incidence rates of clinical mastitis among Canadian Holsteins classified as high, average and low immune responders. Clin. Vaccine Immunol., 20: 106-112.
http://dx.doi.org/10.1128/CVI.00494-12
PMid:23175290 PMCid:PMC3535773
 
20. Wagter-Lesperance, L., Hodgins, D., Emam, S., Paibomesai, M. and Mallard, B. (2014) Expression of TLR2 pattern recognition receptor on mononuclear cells of dairy cattle ranked using estimated breeding values (EBV) of adaptive immune response traits. Proceedings, 10th World Congress on Genetics Applied to Livestock Production, August 17 - 22, 2014; Vancouver, BC Canada. p548.
 
21. Babu, S. and Nutman, T.B. (2003) Proinflammatory cytokines dominate the early immune response to filarial parasites. J. Immunol., 171: 6723-6732.
http://dx.doi.org/10.4049/jimmunol.171.12.6723
PMid:14662876
 
22. Zhao, Y., Zhou, M., Gao, Y., Liu, H., Yang, W., Yue, J. and Chen, D. (2015) Shifted T helper cell polarization in a murine Staphylococcus aureus mastitis model. PLoS One, 10(7): e0134797.
http://dx.doi.org/10.1371/journal.pone.0134797
 
23. Dosogne, H., Vangroenweghe, F. and Burvenich, C. (2002) Potential mechanism of action of J5 vaccine in protection against severe bovine coliform mastitis. Vet. Res., 33: 1-12.
http://dx.doi.org/10.1051/vetres:2001001
PMid:11873813
 
24. Bannerman, D.D. (2009) Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci., 87(1): 10-25.
PMid:18708595
 
25. Kobayashi, Y. (2008) The role of chemokines in neutrophil biology. Front. Biosci., 13: 2400-7.
http://dx.doi.org/10.2741/2853
PMid:17981721
 
26. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and Kirschning, C.J. (1999) PGN- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem., 274: 17406-17409.
http://dx.doi.org/10.1074/jbc.274.25.17406
PMid:10364168
 
27. Muhl, H. and Pfeilschifter, J. (2003) Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int. Immunopharmacol., 3: 1247-55.
http://dx.doi.org/10.1016/S1567-5769(03)00131-0
 
28. Gondaira, S., Higuchi, H., Iwano, H., Nakajima, K., Kawai, K., Hashiguchi, S., Konnai, S. and Nagahata, H. (2015) Cytokine mRNA profiling and the proliferative response of bovine peripheral blood mononuclear cells to Mycoplasma bovis. Vet. Immunol. Immunop., 165(1-2): 45-53.
http://dx.doi.org/10.1016/j.vetimm.2015.03.002
PMid:25800221
 
29. Oviedo-Boyso, J., Cardoso-Correa, B.I., Cajero-Juárez, M., Bravo-Pati-o, A., Valdez-Alarcón, J.J. and Baizabal-Aguirre, V.M. (2008) The capacity of bovine endothelial cells to eliminate intracellular Staphylococcus aureus and Staphylococcus epidermidis is increased by the proinflammatory cytokines TNF-α and IL-1β. FEMS Immunol. Med. Microbiol., 54: 53-59.
http://dx.doi.org/10.1111/j.1574-695X.2008.00447.x
PMid:18625014
 
30. Wojdak-Maksymiec, K., Szyda, J. and Strabel, T. (2013) Parity-dependent association between TNF-α and LTF gene polymorphisms and clinical mastitis in dairy cattle. BMC Vet. Res., 9: 114.
http://dx.doi.org/10.1186/1746-6148-9-114
PMid:23758855 PMCid:PMC3682883
 
31. Tao, W. and Mallard, B. (2007) Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows. Vet. Immunol. Immunop., 44: 201-211.
http://dx.doi.org/10.1016/j.vetimm.2007.06.019
PMid:17658619
 
32. Moore, K.W., Malefyt, R.W., Coffman, R.L. and O'Garra, A. (2001) Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 19: 683-765.
http://dx.doi.org/10.1146/annurev.immunol.19.1.683
PMid:11244051