Open Access
Research
(Published
online: 17-09-2016)
11.
Differential response of immune-related genes to peptidoglycan
and lipoteichoic acid challenge
in vitro -
Sourabh Sulabh, Bharat Bhushan, Manjit Panigrahi, Ankita Verma,
Naseer Ahmad Baba and Pushpendra Kumar
Veterinary World, 9(9): 983-988
doi:
10.14202/vetworld.2016.983-988
Sourabh Sulabh: Division of Animal Genetics, ICAR-Indian
Veterinary Research Institute, Izatnagar, Bareilly - 243 122,
Uttar Pradesh, India; sourabhjsr.vtro4@gmail.com
Bharat Bhushan: Division of Animal Genetics, ICAR-Indian
Veterinary Research Institute, Izatnagar, Bareilly - 243 122,
Uttar Pradesh, India; bhushan.drbharat@gmail.com
Manjit Panigrahi: Division of Animal Genetics, ICAR-Indian
Veterinary Research Institute, Izatnagar, Bareilly - 243 122,
Uttar Pradesh, India; manjit707@gmail.com
Ankita Verma: Division of Animal Genetics, ICAR-Indian
Veterinary Research Institute, Izatnagar, Bareilly - 243 122,
Uttar Pradesh, India; ankita.d_verma@yahoo.co.in
Naseer Ahmad Baba: Division of Animal Genetics, ICAR-Indian
Veterinary Research Institute, Izatnagar, Bareilly - 243 122,
Uttar Pradesh, India; naseervet@gmail.com
Pushpendra Kumar: Division of Animal Genetics, ICAR-Indian
Veterinary Research Institute, Izatnagar, Bareilly - 243 122,
Uttar Pradesh, India; pushpendra64@gmail.com
Received:
05-05-2016,
Accepted:
01-08-2016,
Published online:
17-09-2016
Corresponding author:
Bharat Bhushan, e-mail: bhushan.drbharat@gmail.com
Citation:
Sulabh S, Bhushan B, Panigrahi M, Verma A, Baba NA, Kumar P
(2016) Differential response of immune-related genes to
peptidoglycan and lipoteichoic acid challenge
in vitro,
Veterinary World, 9(9):
983-988.
Abstract
Aim:
To study the effect of
Staphylococcus aureus
cell wall antigens, peptidoglycan (PGN) and lipoteichoic acid (LTA)
challenge on immune cells present in bovine peripheral blood
mononuclear cells (PBMCs).
Materials and Methods:
In this study, efforts have been made to investigate the effects
of three combinations (10+10, 20+20 and 30+30 μg/ml) of PGN and
LTA obtained from
S. aureus.
These antigens were used to challenge the bovine PBMCs. After 6
h of incubation quantitative, real time-polymerase chain
reaction was used to study toll-like receptor 2 (TLR-2) and
major cytokine mRNA expression in bovine PBMC challenged with
three different antigen blends.
Results:
The results indicated that mRNA level of interferon gamma is
influenced by the expression of TLR-2 gene. Tumor necrosis
factor-alpha (TNF-α),
interleukin 10 (IL-10), and IL-8 genes showed a maximum response
at a dose of 10 μg of PGN and 10 μg of LTA challenge per ml of
culture medium. The outcome also suggests that both IL-10 and
IL-8 followed the expression pattern of TNF-α.
Conclusion:
A dose of 10 μg of PGN and 10 μg of LTA per ml of culture medium
was found to be most suitable for challenging PBMC.
Keywords:
expression, lipoteichoic acid, mastitis, peptidoglycan,
peripheral blood mononuclear cell.
References
1. Varshney, J.P. and Naresh, R. (2004) Evaluation of
homeopathic complex in the clinical management of udder
diseases of riverine buffaloes. Homeopathy, 93(1): 17-20.
http://dx.doi.org/10.1016/j.homp.2003.11.007 |
|
2. Watts, J.L. (1988) Etiological agents of bovine mastitis.
Vet. Microbiol., 16: 41-66.
http://dx.doi.org/10.1016/0378-1135(88)90126-5 |
|
3. Von Eiff, C., Peters, G. and Becker, K. (2006) The
small-colony variant (SCV) concept - The role of
Staphylococcus SCVs in persistent infections. Injury, 37(2):
S26-S33.
http://dx.doi.org/10.1016/j.injury.2006.04.006
PMid:16651068 |
|
4. Tilahun, A.Y., Karau, M., Ballard, A., Gunaratna, M.P.,
Thapa, A., David, C.S., Patel, R. and Rajagopalan, G. (2014)
The impact of Staphylococcus aureus - associated molecular
patterns on staphylococcal superantigen-induced toxic shock
syndrome and pneumonia. Mediators Inflamm., 2014: 468285.
http://dx.doi.org/10.1155/2014/468285
PMid:25024509 PMCid:PMC4082930 |
|
5. Dammermann, W., Wollenberg, L., Bentzien, F., Lohse, A.
and Lüth, S. (2013) Toll like receptor 2 agonists
lipoteichoic acid and PGN are able to enhance antigen
specific IFN gamma release in whole blood during recall
antigen responses. J. Immunol. Methods, 396(1-2): 107-115.
http://dx.doi.org/10.1016/j.jim.2013.08.004
PMid:23954282 |
|
6. Mogensen, T.H. (2009) Pathogen recognition and
inflammatory signaling in innate immune defenses. Clin.
Microbiol. Rev., 22(2): 240-273.
http://dx.doi.org/10.1128/CMR.00046-08
PMid:19366914 PMCid:PMC2668232 |
|
7. Park, Y.H., Joo, Y.S., Park, J.Y., Moon, J.S., Kim, S.H.,
Kwon, N.H., Ahn, J.S., Davis, W.C. and Davies, C.J. (2004)
Characterization of lymphocyte subpopulations and major
histocompatibility complex haplotypes of mastitis-resistant
and susceptible cows. J. Vet. Sci., 5(1): 29-39.
PMid:15028883 |
|
8. Taylor, B.C., Dellinger, J.D., Cullor, J.S. and Stott,
J.L. (1994) Bovine milk lymphocytes display the phenotype of
memory T cells and are predominantly CD8+. Cell Immunol.,
156: 245-253.
http://dx.doi.org/10.1006/cimm.1994.1169
PMid:8200039 |
|
9. Alnakip, M.E., Quintela-Baluja, M., Böhme, K.,
Fernández-No, I., Caama-o-Antelo, S., Calo-Mata, P. and
Barros-Velázquez, J. (2014) The immunology of mammary gland
of dairy ruminants between healthy and inflammatory
conditions. J. Vet. Med., 2014: 1.
http://dx.doi.org/10.1155/2014/659801
PMid:26464939 PMCid:PMC4590879 |
|
10. Lewandowska-Sabat, A.M., Boman, G.M., Downing, A.,
Talbot, R., Storset, A.K. and Olsaker, I. (2013) The early
phase transcriptome of bovine monocyte-derived macrophages
infected with Staphylococcus aureus in vitro. BMC Genomics,
14: 891.
http://dx.doi.org/10.1186/1471-2164-14-891
PMid:24341851 PMCid:PMC3878444 |
|
11. Vinod, N., Oh, S., Park, H.J., Koo, J.M., Choi, C.W. and
Kim, S.C. (2015) Generation of a novel Staphylococcus aureus
ghost vaccine and examination of its immunogenicity against
virulent challenge in rats. Infect. Immun., 83(7):
2957-2965.
http://dx.doi.org/10.1128/IAI.00009-15
PMid:25964469 PMCid:PMC4468543 |
|
12. Capparelli, R., Nocerino, N., Medaglia, C., Blaiotta,
G., Bonelli, P. and Iannelli, D. (2011) The Staphylococcus
aureus peptidoglycan protects mice against the pathogen and
eradicates experimentally induced infection. PLoS One,
6(12): Article No: e28377.
http://dx.doi.org/10.1371/journal.pone.0028377 |
|
13. Strandberg, Y., Gray, C., Vuocolo, T., Donaldson, L.,
Broadway, M. and Tellam, R. (2005) Lipopolysaccharide and
lipoteichoic acid induce different innate immune responses
in bovine mammary epithelial cells. Cytokine, 31: 72-86.
http://dx.doi.org/10.1016/j.cyto.2005.02.010
PMid:15882946 |
|
14. Mount, J.A., Karrow, N.A., Caswell, J.L., Boermans, H.J.
and Leslie, K.E. (2009) Assessment of bovine mammary
chemokine gene expression in response to lipopolysaccharide,
lipotechoic acid + peptidoglycan, and CpG
oligodeoxynucleotide 2135. Can. J. Vet. Res., 73: 49-57.
PMid:19337396 PMCid:PMC2613597 |
|
15. Shah, S.M., Kumar, G.V.P., Brah, G.S., Santra, L. and
Pawar, H. (2012) differential expression of Th1- and Th2-
type cytokines murrah buffalo (Bubalus bubalis) on TLR2
induction by B. Subtilis peptidoglycan. Asian Aust. J.
Anim., 25(7): 1021-1028.
http://dx.doi.org/10.5713/ajas.2012.12033
PMid:25049659 PMCid:PMC4092975 |
|
16. Schmittgen, T.D. and Livak, K.J. (2008) Analyzing
real-time PCR data by the comparative CT method. Nat. Protoc.,
3: 1101-1108.
http://dx.doi.org/10.1038/nprot.2008.73
PMid:18546601 |
|
17. Wagter, L.C., Mallard, B.A., Wilkie, B.N., Leslie, E.K.,
Boettcher, P.J. and Dekkers, K.E. (2000) A quantitative
approach to classifying Holstein cows based on antibody
responsiveness and its relationship to peripartum mastitis
occurrence. J. Dairy Sci., 83: 488-498.
http://dx.doi.org/10.3168/jds.S0022-0302(00)74908-3 |
|
18. Thompson-Crispi, K.A., Hine, B., Quinton, M., Miglior,
F. and Mallard, B.A. (2012) Short communication: Association
of disease incidence and adaptive immune response in
Holstein dairy cows. J. Dairy Sci., 95: 3888-3893.
http://dx.doi.org/10.3168/jds.2011-5201 |
|
19. Thompson-Crispi, K.A., Miglior, F. and Mallard, B.A.
(2013) Incidence rates of clinical mastitis among Canadian
Holsteins classified as high, average and low immune
responders. Clin. Vaccine Immunol., 20: 106-112.
http://dx.doi.org/10.1128/CVI.00494-12
PMid:23175290 PMCid:PMC3535773 |
|
20. Wagter-Lesperance, L., Hodgins, D., Emam, S.,
Paibomesai, M. and Mallard, B. (2014) Expression of TLR2
pattern recognition receptor on mononuclear cells of dairy
cattle ranked using estimated breeding values (EBV) of
adaptive immune response traits. Proceedings, 10th World
Congress on Genetics Applied to Livestock Production, August
17 - 22, 2014; Vancouver, BC Canada. p548. |
|
21. Babu, S. and Nutman, T.B. (2003) Proinflammatory
cytokines dominate the early immune response to filarial
parasites. J. Immunol., 171: 6723-6732.
http://dx.doi.org/10.4049/jimmunol.171.12.6723
PMid:14662876 |
|
22. Zhao, Y., Zhou, M., Gao, Y., Liu, H., Yang, W., Yue, J.
and Chen, D. (2015) Shifted T helper cell polarization in a
murine Staphylococcus aureus mastitis model. PLoS One,
10(7): e0134797.
http://dx.doi.org/10.1371/journal.pone.0134797 |
|
23. Dosogne, H., Vangroenweghe, F. and Burvenich, C. (2002)
Potential mechanism of action of J5 vaccine in protection
against severe bovine coliform mastitis. Vet. Res., 33:
1-12.
http://dx.doi.org/10.1051/vetres:2001001
PMid:11873813 |
|
24. Bannerman, D.D. (2009) Pathogen-dependent induction of
cytokines and other soluble inflammatory mediators during
intramammary infection of dairy cows. J. Anim. Sci., 87(1):
10-25.
PMid:18708595 |
|
25. Kobayashi, Y. (2008) The role of chemokines in
neutrophil biology. Front. Biosci., 13: 2400-7.
http://dx.doi.org/10.2741/2853
PMid:17981721 |
|
26. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and
Kirschning, C.J. (1999) PGN- and lipoteichoic acid-induced
cell activation is mediated by toll-like receptor 2. J.
Biol. Chem., 274: 17406-17409.
http://dx.doi.org/10.1074/jbc.274.25.17406
PMid:10364168 |
|
27. Muhl, H. and Pfeilschifter, J. (2003) Anti-inflammatory
properties of pro-inflammatory interferon-gamma. Int.
Immunopharmacol., 3: 1247-55.
http://dx.doi.org/10.1016/S1567-5769(03)00131-0 |
|
28. Gondaira, S., Higuchi, H., Iwano, H., Nakajima, K.,
Kawai, K., Hashiguchi, S., Konnai, S. and Nagahata, H.
(2015) Cytokine mRNA profiling and the proliferative
response of bovine peripheral blood mononuclear cells to
Mycoplasma bovis. Vet. Immunol. Immunop., 165(1-2): 45-53.
http://dx.doi.org/10.1016/j.vetimm.2015.03.002
PMid:25800221 |
|
29. Oviedo-Boyso, J., Cardoso-Correa, B.I., Cajero-Juárez,
M., Bravo-Pati-o, A., Valdez-Alarcón, J.J. and Baizabal-Aguirre,
V.M. (2008) The capacity of bovine endothelial cells to
eliminate intracellular Staphylococcus aureus and
Staphylococcus epidermidis is increased by the
proinflammatory cytokines TNF-α and IL-1β. FEMS Immunol.
Med. Microbiol., 54: 53-59.
http://dx.doi.org/10.1111/j.1574-695X.2008.00447.x
PMid:18625014 |
|
30. Wojdak-Maksymiec, K., Szyda, J. and Strabel, T. (2013)
Parity-dependent association between TNF-α and LTF gene
polymorphisms and clinical mastitis in dairy cattle. BMC
Vet. Res., 9: 114.
http://dx.doi.org/10.1186/1746-6148-9-114
PMid:23758855 PMCid:PMC3682883 |
|
31. Tao, W. and Mallard, B. (2007) Differentially expressed
genes associated with Staphylococcus aureus mastitis of
Canadian Holstein cows. Vet. Immunol. Immunop., 44: 201-211.
http://dx.doi.org/10.1016/j.vetimm.2007.06.019
PMid:17658619 |
|
32. Moore, K.W., Malefyt, R.W., Coffman, R.L. and O'Garra,
A. (2001) Interleukin-10 and the interleukin-10 receptor.
Annu. Rev. Immunol., 19: 683-765.
http://dx.doi.org/10.1146/annurev.immunol.19.1.683
PMid:11244051 |
|