| 
              
              
              Open Access  
 
              
              
              
              Review 
              
              
(Published 
				online: 25-01-2017)  
              17. 
				
              
              Molecular markers for resistance against 
              infectious diseases of economic importance - 
              
              B. M. Prajapati, J. P. Gupta, D. P. Pandey, G. A. Parmar and J. D. 
              Chaudhari 
              
              Veterinary World, 10(1): 112-120   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2017.112-120 
                
                
                B. M. Prajapati: 
                
                Department of Animal Genetics and Breeding, College of 
                Veterinary Science and Animal Husbandry, Sardarkrushinagar 
                Dantiwada Agricultural University, Sardarkrushinagar - 385 506, 
                Gujarat, India. 
              
              J. P. Gupta: 
              
              Department of Animal Genetics and Breeding, College of Veterinary 
              Science and Animal Husbandry, Sardarkrushinagar Dantiwada 
              Agricultural University, Sardarkrushinagar - 385 506, Gujarat, 
              India. 
              
              D. P. Pandey: 
              
              Department of Animal Genetics and Breeding, College of Veterinary 
              Science and Animal Husbandry, Sardarkrushinagar Dantiwada 
              Agricultural University, Sardarkrushinagar - 385 506, Gujarat, 
              India. 
              
              G. A. Parmar: 
              
              Department of Animal Genetics and Breeding, College of Veterinary 
              Science and Animal Husbandry, Sardarkrushinagar Dantiwada 
              Agricultural University, Sardarkrushinagar - 385 506, Gujarat, 
              India. 
              
              J. D. Chaudhari: 
              
              Department of Animal Genetics and Breeding, College of Veterinary 
              Science and Animal Husbandry, Sardarkrushinagar Dantiwada 
              Agricultural University, Sardarkrushinagar - 385 506, Gujarat, 
              India.   
              
              Received: 27-09-2016, Accepted: 31-12-2016, Published online: 
              25-01-2017   
				
              	
              	Corresponding author: 
              	
				
                B. M. Prajapati, e-mail: bmprajapati1993@gmail.com 
 
              Citation: 
              
              Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD (2017) 
              Molecular markers for resistance against infectious diseases of 
              economic importance, 
              
              Veterinary World, 
              
              10(1): 112-120. 
 
              
				Abstract 
 
              
              Huge livestock population of India is under threat by a large 
              number of endemic infectious (bacterial, viral, and parasitic) 
              diseases. These diseases are associated with high rates of 
              morbidity and mortality, particularly in exotic and crossbred 
              cattle. Beside morbidity and mortality, economic losses by these 
              diseases occur through reduced fertility, production losses, etc. 
              Some of the major infectious diseases which have great economic 
              impact on Indian dairy industries are tuberculosis (TB), Johne’s 
              disease (JD), mastitis, tick and tick-borne diseases (TTBDs), foot 
              and mouth disease, etc. The development of effective strategies 
              for the assessment and control of infectious diseases requires a 
              better understanding of pathogen biology, host immune response, 
              and diseases pathogenesis as well as the identification of the 
              associated biomarkers. Indigenous cattle (Bos 
              indicus) 
              are reported to be comparatively less affected than exotic and 
              crossbred cattle. However, genetic basis of resistance in 
              indigenous cattle is not well documented. The association studies 
              of few of the genes associated with various diseases, namely, 
              solute carrier family 11 member 1, Toll-like receptors 1, with TB; 
              Caspase associated recruitment domain 15, SP110 with JD; CACNA2D1, 
              CD14 with mastitis and interferon gamma, BoLA -DRB3.2 alleles with 
              TTBDs, etc., are presented. Breeding for genetic resistance is one 
              of the promising ways to control the infectious diseases. High 
              host resistance is the most important method for controlling such 
              diseases, but till today no breed is total immune. Therefore, work 
              may be undertaken under the hypothesis that the different 
              susceptibility to these diseases are exhibited by indigenous and 
              crossbred cattle is due to breed-specific differences in the 
              dealing of infected cells with other immune cel ls, which 
              ultimately influence the immune response responded against 
              infections. Achieving maximum resistance to these diseases is the 
              ultimate goal, is technically possible to achieve, and is 
              permanent. Progress could be enhanced through introgression of 
              resistance genes to breeds with low resistance. The quest for 
              knowledge of the genetic basis for infectious diseases in 
              indigenous livestock is strongly warranted. 
              
              Keywords: 
              
              biomarkers, foot and mouth disease, genetic resistance, Johne’s 
              disease, mastitis, tick and tick-borne diseases, tuberculosis. 
 
              References 
 
                
                  | 1. Thakur, A., Sharma, M., Vipin, C.K., Dhar, P. and Katoch, 
                  R.C. (2010) A study on the prevalence of bovine tuberculosis 
                  in farmed dairy cattle in Himachal Pradesh. Vet. World, 3(9): 
                  409-414. https://doi.org/10.5455/vetworld.2010.408-413
 |  
                  |  |  
                  | 2. Ahuja, V., Rajasekhar, M. and Ramalinga, R. (2008) Animal 
                  Health for Poverty Alleviation: A Review of Key Issues for 
                  India. Background Paper Prepared for "Livestock Sector Review" 
                  of the World Bank. |  
                  |  |  
                  | 3. Jovanovic, S., Savic, M. and Zivkovic, D. (2009) Genetic 
                  variation in disease resistance among farm animals. Biotechnol. 
                  Anim. Husb., 25(5): 339-347. https://doi.org/10.2298/BAH0906339J
 |  
                  |  |  
                  | 4. Shyma, K.P., Gupta, J.P. and Singh, V. (2015) Breeding 
                  strategies for tick resistance in tropical cattle: A 
                  sustainable approach for tick control. J. Parasit. Dis., 
                  39(1): 1-6. https://doi.org/10.1007/s12639-013-0294-5
 PMid:25698850 PMCid:PMC4328023
 |  
                  |  |  
                  | 5. Shyma, K.P., Gupta, J.P., Singh, V. and Patel, K.K. (2015) 
                  In vitro detection of acaricidal resistance status of 
                  Rhipicephalus (Boophilus) microplus against commercial 
                  preparation of deltamethrin, flumethrin, and fipronil from 
                  North Gujarat, India. J. Parasitol. Res., 2015: 1-7. https://doi.org/10.1155/2015/506586
 PMid:26788362 PMCid:PMC4691617
 |  
                  |  |  
                  | 6. Bansal, B.K. and Gupta, D.K. (2009) Economic analysis of 
                  bovine mastitis in India and Punjab - A review. Indian J. 
                  Dairy Sci., 67: 337-345. |  
                  |  |  
                  | 7. Tuggle, C.K. and Waters, W.R. (2015) Tuberculosis-resistant 
                  transgenic cattle. Proc. Natl. Acad. Sci. India, 112(3): 
                  3854-3855. https://doi.org/10.1073/pnas.1502972112
 |  
                  |  |  
                  | 8. Wadhwa, A., Foote, R.S., Shaw, R.W. and Eda, S. (2012) 
                  Bead-based microfluidic immunoassay for diagnosis of Johne's 
                  disease. J. Immunol. Methods, 382(2): 196-202. https://doi.org/10.1016/j.jim.2012.06.006
 PMid:22705087
 |  
                  |  |  
                  | 9. Singh, B., Prasad, S., Sinha, D.K. and Verma, M.R. (2013) 
                  Estimation of economic losses due to foot and mouth disease in 
                  India. Indian J. Anim. Sci., 83(9): 964-970. |  
                  |  |  
                  | 10. Walker, A.R. (2011) Eradication and control of livestock 
                  ticks: Biological, economic and social perspectives. J. 
                  Parasitol., 138: 945-959. https://doi.org/10.1017/s0031182011000709
 |  
                  |  |  
                  | 11. Minjauw, B. and McLeod, A. (2003) Tick-borne Diseases and 
                  Poverty. The Impact of Ticks and Tick-borne Diseases on the 
                  Livelihoods of Small Scale and Marginal Livestock Owners in 
                  India and Eastern and Southern Africa. Research Report, DFID 
                  Animal Health Programme. Centre for Tropical Veterinary 
                  Medicine, University of Edinburgh. p116. |  
                  |  |  
                  | 12. Arentz, M. and Hawn, T.R. (2007) Tuberculosis infection: 
                  Insight from immunogenomics. Drug Discov. Today Dis. Mech., 
                  4(4): 231-236. https://doi.org/10.1016/j.ddmec.2007.11.003
 PMid:18677418 PMCid:PMC2493064
 |  
                  |  |  
                  | 13. Thoen, C.O. and Bloom, B.R. (1995) Pathogenesis of 
                  Mycobacterium bovis. In: Thoen, C.O. and Steele, J.H., 
                  editors. Mycobacterium bovis Infection in Animals and Humans. 
                  1st ed. Lowa State University Press, Ames, Lowa. p3-14. |  
                  |  |  
                  | 14. Russell, D.G. (2007) Who puts the tubercle in 
                  tuberculosis? Nat. Rev. Microbiol., 5: 39-47. https://doi.org/10.1038/nrmicro1538
 PMid:17160001
 |  
                  |  |  
                  | 15. Olsen, I., Barletta, R.G. and Thoen, C.O. (2010) 
                  Mycobacterium. In: Gyles, C.L., Prescott, J.F., Songer, J.G. 
                  and Thoen, C.O., editors. Pathogenesis of Bacterial Infections 
                  in Animals. John Wiley & Sons, Ames, Lowa. https://doi.org/10.1002/9780470958209.ch7
 |  
                  |  |  
                  | 16. Singh, S.V., Singh, P.K., Singh, A.V., Sohal, J.S., Kumar, 
                  N., Chaubey, K.K., Gupta, S., Kumar, A., Bhatia, A.K., 
                  Srivastav, A.K. and Dhama, K. (2014) Bio-load and bio-type 
                  profiles of Mycobacterium avium subspecies Paratuberculosis 
                  infection in the farm and farmer's herds/flocks of domestic 
                  livestock population endemic for Johne's disease. Transbound. 
                  Emerg. Dis., 61(8): 1-13. |  
                  |  |  
                  | 17. Slagame, P., Abrams, J.S. and Clayberger, C. (1991) 
                  Differing lymphokine profiles of functional subsets of human 
                  CD4 and CD8 T cell clones. Science, 254: 279-282. https://doi.org/10.1126/science.1681588
 |  
                  |  |  
                  | 18. Orme, I.M. (1993) Immunity to mycobacteria. Curr. Opin. 
                  Immunol., 5: 497-502. https://doi.org/10.1016/0952-7915(93)90029-R
 |  
                  |  |  
                  | 19. Radostits, O., Gay, C., Hinchcliff, K. and Constable, P. 
                  (2006) Veterinary Medicine: A Textbook of the Diseases of 
                  Cattle, Sheep, Goats, Pigs and Horses. 10th ed. Bailliere 
                  Tindal, London. p1223-1231. |  
                  |  |  
                  | 20. Arzt, J., Juleff, N., Zhang, Z. and Rodriguez, L.L. (2011) 
                  The pathogenesis of foot-and-mouth disease I: Viral pathways 
                  in cattle. Transbound. Emerg. Dis., 58(4): 291-304. https://doi.org/10.1111/j.1865-1682.2011.01204.x
 PMid:21366894
 |  
                  |  |  
                  | 21. Arzt, J., Pacheco, J.M. and Rodriguez, L.L. (2010) The 
                  early pathogenesis of foot-and-mouth disease in cattle after 
                  aerosol inoculation: Identification of the naso-pharynx as the 
                  primary site of infection. Vet. Pathol., 47(6): 1048-1063. https://doi.org/10.1177/0300985810372509
 PMid:20587691
 |  
                  |  |  
                  | 22. Pestka, S., Krause, C.D., Sarkar, D., Walter, M.R., Shi, 
                  Y. and Fisher, P.B. (2004) Interleukin-10 and related 
                  cytokines and receptors. Annu. Rev. Immunol., 22: 929-979. https://doi.org/10.1146/annurev.immunol.22.012703.104622
 PMid:15032600
 |  
                  |  |  
                  | 23. Toka, F.N., Nfon, C., Dawson, H. and Golde, W.T. (2009) 
                  Natural killer cell dysfunction during acute infection with 
                  foot-and-mouth disease virus. Clin. Vaccine Immunol., 16(12): 
                  1738-1749. https://doi.org/10.1128/CVI.00280-09
 PMid:19828769 PMCid:PMC2786395
 |  
                  |  |  
                  | 24. Peter, R.J., Vanden, B.P., Penzhorn, B.L. and Sharp, B. 
                  (2005) Tick, fly, and mosquito control-lessons from the past, 
                  solutions for the future. Vet. Parasitol., 132(3): 205-215. https://doi.org/10.1016/j.vetpar.2005.07.004
 PMid:16099104
 |  
                  |  |  
                  | 25. Ghosh, S. and Gaurav, N. (2014) Problem of ticks and 
                  tick-borne diseases in India with special emphasis on progress 
                  in tick control research: A review. J. Vector Borne Dis., 
                  51(12): 259-270. PMid:25540956
 |  
                  |  |  
                  | 26. Ahmed, J.S. (2002) The role of cytokines in immunity to 
                  and in immunopathogenisis of piroplasmoses. Parasitol. Res., 
                  88: 548-550. https://doi.org/10.1007/s00436-001-0573-4
 |  
                  |  |  
                  | 27. Hunfeld, K.P., Hildebrandt, A. and Gray, J.S. (2008) 
                  Recent insights into babesiosis. Int. J. Parasitol., 38: 
                  1219-1237. https://doi.org/10.1016/j.ijpara.2008.03.001
 PMid:18440005
 |  
                  |  |  
                  | 28. Yitayew, D. and Samuel, D. (2015) Tick borne hemoparasitic 
                  diseases of ruminants: A review. Adv. Biol. Res., 9(4): 
                  210-224. |  
                  |  |  
                  | 29. Taylor, M.A., Coop, R.L. and Wall, R.L. (2007) Veterinary 
                  Parasitology. 3rd ed. Blackwell Publishing, USA. p103-115. PMCid:PMC1964552
 |  
                  |  |  
                  | 30. Bobos, S., Radinovic, M., Vidic, B., Pajic, M., Vidic, V. 
                  and Galfi, A. (2013) Mastitis therapy-direct and indirect 
                  costs. Biotechnol. Anim. Husb., 29: 269-275. https://doi.org/10.2298/BAH1302269B
 |  
                  |  |  
                  | 31. Varatanovic, N., Podzo, M., Mutevelic, T., Podzo, K., 
                  Cengic, B., Hodzic, A. and Hodzic, E. (2010) Use of California 
                  mastitis test, somatic cells count and bacteriological 
                  findings in diagnostics of subclinical mastitis. Biotechnol. 
                  Anim. Husb., 26: 65-74. https://doi.org/10.2298/BAH1002065V
 |  
                  |  |  
                  | 32. Sharif, A. and Muhammad, G. (2008) Somatic cell count as 
                  an indicator of udder health status under modern dairy 
                  production: A review. Pak. Vet. J., 28: 194-200. |  
                  |  |  
                  | 33. Kelly, A.L., Leitner, G. and Merin, U. (2011) Milk quality 
                  and udder health-test methods and standards. In: Fuquay, J.W., 
                  Fox, P.F. and McSweeney, P.L.H., editors. Encyclopedia of 
                  Dairy Science. 2nd ed. Academic Press, London. p894-901. https://doi.org/10.1016/b978-0-12-374407-4.00353-8
 |  
                  |  |  
                  | 34. Galfi, A., Radinovic, M., Milanov, D., Bobos, S., Pajic, 
                  M., Savic, S. and Davidov, I. (2015) Electrical conductivity 
                  of milk and bacteriological findings in cows with subclinical 
                  mastitis. Biotechnol. Anim. Husb., 31(4): 533-541. https://doi.org/10.2298/BAH1504533G
 |  
                  |  |  
                  | 35. Daley, M.J., Coyle, P.A., Williams, T.J., Furda, G., 
                  Dougherty, R. and Hayes, P.W. (1991) Staphylococcus aureus 
                  mastitis: Pathogenesis and treatment with bovine interleukin-1 
                  beta and interleukin-2. J. Dairy Sci., 74(12): 4413-4124. https://doi.org/10.3168/jds.S0022-0302(91)78637-2
 |  
                  |  |  
                  | 36. Feuk, L., Carson, A.R. and Scherer, S.W. (2006) Structural 
                  variation in the human genome. Nat. Rev. Genet., 7(2): 85-97. https://doi.org/10.1038/nrg1767
 PMid:16418744
 |  
                  |  |  
                  | 37. Firas, R.S. and Abdulkareem A. (2015) Molecular markers: 
                  An introduction and applications. Eur. J. Mol. Biotechnol., 
                  9(3): 118-130. https://doi.org/10.13187/ejmb.2015.9.118
 |  
                  |  |  
                  | 38. Gizaw, S., Van Arendonk, J.A.M., Komen, H., Windig, J.J. 
                  and Hanotte, O. (2007) Population structure, genetic variation 
                  and morphological diversity in indigenous sheep of Ethiopia. 
                  J. Anim. Breed. Genet., 38: 621-628. https://doi.org/10.1111/j.1365-2052.2007.01659.x
 PMid:18028516
 |  
                  |  |  
                  | 39. Yang, W., Kang, X., Yang, Q., Lin, Y. and Fang, M. (2013) 
                  Review on the development of genotyping methods for assessing 
                  farm animal diversity. J. Anim. Sci. Biotechnol., 4(2): 1-6. https://doi.org/10.1186/2049-1891-4-2
 |  
                  |  |  
                  | 40. Hayes, B.J., Chamberlain, A.C., McPartlan, H., McLeod, I., 
                  Sethuraman, L. and Goddard, M.E. (2007) Accuracy of marker 
                  assisted selection with single markers and marker haplotypes 
                  in cattle. Genet. Res., 89: 215-220. https://doi.org/10.1017/S0016672307008865
 PMid:18208627
 
                    
                      |  |  
                      | 41. Emadi, A., Crim, M.T. and Brotman, D.J. (2010) 
                      Analytic validity of genetic tests to identify factor V 
                      leiden and prothrombin G20210A. Am. J. Hematol., 85(4): 
                      264-270. https://doi.org/10.1002/ajh.21617
 PMid:20162544
 |  
                      |  |  
                      | 42. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. and 
                      Sekiya, T. (1989) Detection of polymorphisms of human DNA 
                      by gel electrophoresis as single-strand conformation 
                      polymorphisms. Proc. Natl. Acad. Sci. U.S.A., 86: 
                      2766-2770. https://doi.org/10.1073/pnas.86.8.2766
 PMid:2565038 PMCid:PMC286999
 |  
                      |  |  
                      | 43. Defaveri, J., Viitaniemi, I., Leder, H. and Meril, J. 
                      (2013) Characterizing genic and nongenic molecular 
                      markers: Comparison of microsatellites and SNPs. Mol. 
                      Ecol. Resour., 13: 377-392. https://doi.org/10.1111/1755-0998.12071
 PMid:23356957
 |  
                      |  |  
                      | 44. Lander, E.S. (1996) The new genomics: Global views of 
                      biology. Science, 274: 536-539. https://doi.org/10.1126/science.274.5287.536
 PMid:8928008
 |  
                      |  |  
                      | 45. Deb, R., Singh, U., Kumar, S., Kumar, A., Singh, R., 
                      Sengar, G., Mann, S. and Sharma, A. (2014) Genotypic to 
                      expression profiling of bovine calcium channel, 
                      voltage-dependent, alpha-2/delta subunit 1 gene, and their 
                      association with bovine mastitis among Frieswal (HFX 
                      sahiwal) crossbred cattle of Indian origin. Anim. 
                      Biotechnol., 25(2): 128-138. https://doi.org/10.1080/10495398.2013.836106
 PMid:24555798
 |  
                      |  |  
                      | 46. Yuan, Z.R., Li, J., Liu, L., Zhang, L.P., Zhang, L.M., 
                      Chen, C., Chen, X.J., Gao, X., Li, J.Y., Chen, J.B., Gao, 
                      H.J. and Xu, S.Z. (2011) Single nucleotide polymorphism of 
                      CACNA2D1 gene and its association with milk somatic cell 
                      score in cattle. Mol. Biol. Rep., 38(8): 5179-5183. https://doi.org/10.1007/s11033-010-0667-0
 PMid:21225462
 |  
                      |  |  
                      | 47. Yuan, Z., Chu, G., Yang, D., Li, J., Zhang, L., Li, 
                      J., Gao, X., Gao, H., Xu, S. and Liu, Z. (2012) BRCA1: A 
                      new candidate gene for bovine mastitis and its association 
                      analysis between single nucleotide polymorphisms and milk 
                      somatic cell score. Mol. Biol. Rep., 39: 6625-6631. https://doi.org/10.1007/s11033-012-1467-5
 |  
                      |  |  
                      | 48. Asaf, V.N., Bhushan, B., Panigrahi, M., Kumar, A., 
                      Dewangan, P., Gaur, G.K. and Sharma, D. (2015) Lack of 
                      association of allelic variants of BRCA1 gene with 
                      mastitis susceptibility in Vrindavani cattle. Indian J. 
                      Anim. Sci., 85(1): 81-83. |  
                      |  |  
                      | 49. Wang, X., Xu, S., Gao, X., Ren, H. and Chen, J. (2007) 
                      Genetic polymorphism of TLR4 gene and correlation with 
                      mastitis in cattle. J. Genet. Genomics, 34(5): 406-412. https://doi.org/10.1016/S1673-8527(07)60044-7
 |  
                      |  |  
                      | 50. Deb, R., Singh, U., Kumar, S., Kumar, A., Sharma, A., 
                      Mann, S. and Singh, R. (2013) TIR domain of bovine TLR4 
                      gene in Frieswal crossbred cattle: An early marker for 
                      mastitis resistance. Indian J. Anim. Sci., 83(6): 633-635. |  
                      |  |  
                      | 51. Yang, Y., Huang, J.M., Ju, Z.H., Li, Q.L., Zhou, L., 
                      Li, R.L., Li, J.B., Shi, F.X., Zhong, J.F. and Wang, C.F. 
                      (2012) Increased expression of a novel splice variant of 
                      the complement component 4 (C4A) gene in mastitis-infected 
                      dairy cattle. Genet. Mol. Res., 11(3): 2909-2916. https://doi.org/10.4238/2012.May.18.12
 PMid:22653646
 |  
                      |  |  
                      | 52. Liu, Y.X., Xu, C.H., Gao, T.Y. and Sun, Y. (2012) 
                      Polymorphisms of the ATP1A1 gene associated with mastitis 
                      in dairy cattle. Genet. Mol. Res., 11(1): 651-660. https://doi.org/10.4238/2012.March.16.3
 PMid:22535401
 |  
                      |  |  
                      | 53. Wang, H.L., Li, Z.X., Wang, L.J., He, H., Yang, J., 
                      Chen, L., Niu, F.B., Liu, Y., Guo, J.Z. and Liu, X.L. 
                      (2013) Polymorphism in PGLYRP-1 gene by PCR-RFLP and its 
                      association with somatic cell score in Chinese Holstein. 
                      Res. Vet. Sci., 95(2): 508-514. https://doi.org/10.1016/j.rvsc.2013.06.005
 PMid:23820447
 |  
                      |  |  
                      | 54. Selvan, A.S., Gupta, I.D., Verma, A., Chaudhari, M.V. 
                      and Kumar, V. (2014) Cluster of differentiation 14 gene 
                      polymorphism and its association with incidence of 
                      clinical mastitis in Karan fries cattle. Vet. World, 7(5): 
                      134-138. https://doi.org/10.14202/vetworld.2014.1037-1040
 |  
                      |  |  
                      | 55. Gupta, J.P., Bhushan, B., Panigrahi, M., Ranjan, S., 
                      Asaf, V.N.M., Kumar, A., Sulabh, S., Kumar, A., Kumar, P. 
                      and Sharma, D. (2015) Study on genetic variation of short 
                      tandem repeats (STR) markers and their association with 
                      somatic cell scores (SCS) in crossbred cows. Indian J. 
                      Anim. Res., 49(5): 595-598. https://doi.org/10.18805/ijar.6709
 |  
                      |  |  
                      | 56. Asaf, M.V.N., Bhushan, B., Panigrahi, M., Dewangan, 
                      P., Kumar, A., Kumar, P. and Gaur, G.K. (2014) Association 
                      study of genetic variants at single nucleotide 
                      polymorphism rs109231409 of mannose-binding lectins 1 gene 
                      with mastitis susceptibility in Vrindavani crossbred 
                      cattle. Vet. World, 7(10): 807-810. https://doi.org/10.14202/vetworld.2014.807-810
 |  
                      |  |  
                      | 57. Zhao, Z.L., Wang, C.F., Li, Q.L., Ju, Z.H., Huang, J.M., 
                      Li, J.B., Zhong, J.F. and Zhang, J.B. (2012) Novel SNPs of 
                      the mannan-binding lectin 2 gene and their association 
                      with production traits in Chinese Holsteins. Genet. Mol. 
                      Res., 11(4): 3744-3754. https://doi.org/10.4238/2012.October.15.6
 PMid:23096694
 |  
                      |  |  
                      | 58. Guo, H.J., Li, G.Z., Yang, C. and Xing, M.C. (2003) 
                      Study on genetic variation of 4 microsatellite DNA markers 
                      and their relationship with somatic cell counts in cow 
                      milk. Asian-Australas J. Anim. Sci., 16(10): 1535-1539. https://doi.org/10.5713/ajas.2003.1535
 |  
                      |  |  
                      | 59. Chu, M.X., Zhou, G.L., Jin, H.G., Shi, W.H., Cao, F.C., 
                      Fang, L., Ye, S.C. and Zhu, Y. (2005) Study on 
                      relationships between seven microsatellite loci and 
                      somatic cell score in Beijing Holstein cows. J. Genet. 
                      Genomics, 32(5): 471-475. |  
                      |  |  
                      | 60. Ranjan, S. (2014) Genetic Polymorphism and Expression 
                      Profiling of Candidate Genes Associated with Mastitis in 
                      Crossbred Cattle. Ph.D. Thesis. IVRI (Deemed University), 
                      Bareilly, UP, India. |  
                      |  |  
                      | 61. Gupta, J.P. (2015) Microsatellite Analysis and 
                      Expression Profiling of Candidate Genes Associated with 
                      Mastitis in Crossbred Cattle. Ph.D. Thesis. IVRI (Deemed 
                      University), Bareilly, UP, India. |  
                      |  |  
                      | 62. Cheng, Y., Huang, C. and Tsai, H.J. (2015) 
                      Relationship of bovine SLC11A1 (formerly NRAMP1) 
                      polymorphisms to the risk of bovine tuberculosis in 
                      Holstein cattle. J. Vet. Sci. Technol., 6: 247. |  
                      |  |  
                      | 63. Baqir, M., Bhushan, S., Kumar, A., Sonawane, A., 
                      Singh, R., Chauhan, A., Yadav, R., Prakash, O., Renjith, 
                      R., Baladhare, A. and Sharma, D. (2016) Association of 
                      polymorphisms in SLC11A1 gene with bovine tuberculosis 
                      trait among Indian cattle. J. Appl. Anim. Res., 44(1): 
                      380. https://doi.org/10.1080/09712119.2015.1091333
 |  
                      |  |  
                      | 64. Wang, Y., Wang, S., Liu, T., Tu, W., Li, W. and Dong, 
                      G. (2015) CARD15 gene polymorphisms are associated with 
                      tuberculosis susceptibility in Chinese Holstein cows. PLoS 
                      One, 10(8): 1-10. https://doi.org/10.1371/journal.pone.0135085
 |  
                      |  |  
                      | 65. Qin, B., Liu, T., Xu, C., Dong, G., Wang, S., Tu, W., 
                      Shi, X. and Zhang, Y. (2015) Correlation study of CARD15 
                      gene style polymorphism and susceptibility of tuberculosis 
                      in dairy cows. China Anim. Husb. Vet. Med., 42(6): 
                      1553-1558. |  
                      |  |  
                      | 66. Cheng, Y., Huang, C. and Tsai, H.J. (2016) 
                      Relationship of bovine NOS2 gene polymorphisms to the risk 
                      of bovine tuberculosis in Holstein cattle. J. Vet. Med. 
                      Sci., 78(2): 281-286. https://doi.org/10.1292/jvms.15-0295
 PMid:26468216 PMCid:PMC4785118
 |  
                      |  |  
                      | 67. Sun, L., Yapan, S., Hasan, R., Yang, H., Guohua, H., 
                      Guohua, A. and Yang, A. (2012) Polymorphisms in toll-like 
                      receptor 1 and 9 genes and their association with 
                      tuberculosis susceptibility in Chinese Holstein cattle. 
                      Vet. Immunol. Immunopathol., 147(3): 195-221. https://doi.org/10.1016/j.vetimm.2012.04.016
 PMid:22572235
 |  
                      |  |  
                      | 68. Alfano, F., Peletto, S., Maria, G.L., Borriello, G., 
                      Urciuolo, G., Desiato, R., Tarantino, M., Barone, A., 
                      Pasquali, P., Acutis, P.L., Maria, G.M. and Galiero, G. 
                      (2014) Identification of single nucleotide polymorphisms 
                      in toll-like receptor candidate genes associated with 
                      tuberculosis infection in water buffalo (Bubalus bubalis). 
                      BMC Genet., 15(2): 1-8. https://doi.org/10.1186/s12863-014-0139-y
 |  
                      |  |  
                      | 69. Zanotti, M., Strillacci, M.P., Polli, M., Archetti, 
                      I.L. and Longeri, M. (2002) NRAMP1 Gene Effect on Bovine 
                      Tuberculosis by Microsatellite Markers Analysis. Book 
                      Proceedings of the 7th World Congress on Genetics Applied 
                      to Livestock Production, Montpellier, France. p1052. PMCid:PMC1302363
 |  
                      |  |  
                      | 70. Kadarmideen, H.N., Ali, A.A., Thomson, P.C., Muller, 
                      B. and Zinsstag, J. (2011) Polymorphisms of the SLC11A1 
                      gene and resistance to bovine tuberculosis in African Zebu 
                      cattle. Anim. Genet., 42(6): 656-658. https://doi.org/10.1111/j.1365-2052.2011.02203.x
 PMid:22035008
 |  
                      |  |  
                      | 71. Ali, A.A., Peter, C., Thomson, H. and Kadarmideen, N. 
                      (2013) Association between microsatellite markers and 
                      bovine tuberculosis in Chadian Zebu cattle. Open J. Anim. 
                      Sci., 3(1): 27-35. https://doi.org/10.4236/ojas.2013.31004
 |  
                      |  |  
                      | 72. Ruiz, O., Garrido, J.M., Iriondo, M., Manzano, C., 
                      Molina, E., Montes, I., Vazquez, P., Koets, A.P., Rutten, 
                      V.P., Juste, R.A. and Estonba, A. (2010) SP110 as a novel 
                      susceptibility gene for Mycobacterium avium subspecies 
                      Paratuberculosis infection in cattle. J. Dairy Sci., 
                      93(12): 5950-5958. https://doi.org/10.3168/jds.2010-3340
 PMid:21094769
 |  
                      |  |  
                      | 73. Pinedo, P.J., Buergelt, C.D., Donovan, G.A., Melendez, 
                      P., Morel, L., Wu, R., Langaee, T.Y. and Rae, D.O. (2009) 
                      Association between CARD15/NOD2 gene polymorphisms and 
                      Paratuberculosis infection in cattle. Vet. Microbiol., 
                      134(9): 346-352. https://doi.org/10.1016/j.vetmic.2008.09.052
 PMid:18926647
 |  
                      |  |  
                      | 74. Ruiz, O., Manzano, C., Iriondo, M., Garrido, J.M., 
                      Molina, E., Vazquez, P., Just, R.A. and Estonba, A. (2011) 
                      Genetic variation of toll-like receptor genes and 
                      infection by Mycobacterium avium ssp. Paratuberculosis in 
                      Holstein-Friesian cattle. J. Dairy Sci., 94(9): 3635-3641. https://doi.org/10.3168/jds.2010-3788
 PMid:21700053
 |  
                      |  |  
                      | 75. Koets, A., Santema, W., Mertens, H., Oostenrijk, D., 
                      Keestra, M., Overdijk, M., Labouriau, R., Franken, P., 
                      Frijters, A., Nielen, M. and Rutten, V. (2010) 
                      Susceptibility to Paratuberculosis infection in cattle is 
                      associated with single nucleotide polymorphisms in 
                      toll-like receptor 2 which modulate immune responses 
                      against Mycobacterium avium subspecies Paratuberculosis. 
                      Prev. Vet. Med., 93(4): 305-315. https://doi.org/10.1016/j.prevetmed.2009.11.008
 PMid:20005587
 |  
                      |  |  
                      | 76. Kumar, S. (2015) SNP in Candidate Genes and Their 
                      Association with Occurrence of PT in Cattle. M.V.Sc. 
                      Thesis. IVRI (Deemed University), Bareilly, UP, India. |  
                      |  |  
                      | 77. Pinedo, P.J., Buergelt, C.D., Donovan, G.A., Melendez, 
                      P., Morel, L., Wu, R., Langaee, T.Y. and Rae, D.O. (2009) 
                      Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as 
                      risk factors for paratuberculosis infection in cattle. 
                      Prev. Vet. Med., 91: 189-196. https://doi.org/10.1016/j.prevetmed.2009.05.020
 PMid:19525022
 |  
                      |  |  
                      | 78. Singh, R., Kumar, S., Deb, R., Sengar, G., Singh, U., 
                      Chakraborti, S., Singh, R., Alex, R. and Sharma, S. (2014) 
                      Development of a tetra-primer ARMS PCR-based assay for 
                      detection of a novel single-nucleotide polymorphism in the 
                      5 untranslated region of the bovine ITGB6 receptor gene 
                      associated with foot-and-mouth disease susceptibility in 
                      cattle. Arch. Virol., 159: 3385-3389. https://doi.org/10.1007/s00705-014-2194-0
 PMid:25078391
 |  
                      |  |  
                      | 79. Gowane, G.R., Sharma, A.K., Sankar, M., Narayanan, K., 
                      Das, B., Subramaniam, S. and Pattnaik, B. (2013) 
                      Association of BoLA DRB3 alleles with variability in 
                      immune response among the crossbred cattle vaccinated for 
                      foot-and-mouth disease (FMD). Res. Vet. Sci., 95: 156-163. https://doi.org/10.1016/j.rvsc.2013.03.001
 PMid:23541924
 |  
                      |  |  
                      | 80. Lei, W., Liang, Q., Wang, C., Jing, L., Wu, X. and He, 
                      H. (2012) BoLA-DRB3 gene polymorphism and FMD resistance 
                      or susceptibility in Wanbei cattle. Mol. Biol. Rep., 39: 
                      9203-9209. https://doi.org/10.1007/s11033-012-1793-7
 PMid:22744423 PMCid:PMC3404275
 |  
                      |  |  
                      | 81. Chinsangaram, J., Moraes, M.P., Koster, M. and Grubman, 
                      M.J. (2003) Novel viral disease control strategy: 
                      Adenovirus expressing alpha interferon rapidly protects 
                      swine from foot-and-mouth disease. J. Virol., 77(2): 
                      1621-1625. https://doi.org/10.1128/JVI.77.2.1621-1625.2003
 PMCid:PMC140819
 |  
                      |  |  
                      | 82. Maryam, J., Babar, M.E., Nadeem, A. and Hussain, T. 
                      (2012) Genetic variants in interferon gamma (IFN-c) gene 
                      are associated with resistance against ticks in Bos taurus 
                      and Bosindicus. Mol. Biol. Rep., 9: 4565-4570. https://doi.org/10.1007/s11033-011-1246-8
 PMid:21960011
 |  
                      |  |  
                      | 83. Martinez, M.L., Machado, M.A., Nascimento, C.S., 
                      Silva, M.V.G., Teodoro, R.L., Furlong, J., Prata, M.C.A., 
                      Campos, A.L., Guimaraes, M.F.M., Azevedo, A.L.S., Pires, 
                      M.F.A. and Verneque, R.S. (2006) Association of 
                      BoLA-DRB3.2 alleles with tick (Boophilus microplus) 
                      resistance in cattle. Genet. Mol. Res., 5(3): 513-524. PMid:17117367
 |  
                      |  |  
                      | 84. Rodriguez, A.R., Morales, A.R., Balladares, S., 
                      Aguilar, F.H., Vazquez, G.Z. and Gorodezky, C. (2005) 
                      Analysis of BoLA Class II microsatellites in cattle 
                      infested with Boophilus microplus ticks: Class II is 
                      probably associated with susceptibility. Vet. Parasitol., 
                      127(5): 313-321. https://doi.org/10.1016/j.vetpar.2004.10.007
 PMid:15710532
 |  
                      |  |  
                      | 85. Dewangan, P., Panigrahi, M., Kumar, A., Saravanan, 
                      B.C., Ghosh, S., Asaf, V.N., Parida, S., Gaur, G.K., 
                      Sharma, D. and Bhushan, B. (2015) The mRNA expression of 
                      immune-related genes in crossbred and Tharparkar cattle in 
                      response to in vitro infection with Theileria annulata. 
                      Mol. Biol. Rep., 42(8): 1247-1255. https://doi.org/10.1007/s11033-015-3865-y
 PMid:25697418
 |  
                      |  |  
                      | 86. Kumar, A., Gaura, G., Gandham, R., Panigrahi, M., 
                      Ghosh, S., Saravanan, B.C., Bhushan, B., Tiwari, A., 
                      Sulabh, S., Priya, B., Asaf, V.N.M., Gupta, J.P., Wani, 
                      S.A., Sahu, A.R. and Sahoo, A.P. (2017) Global gene 
                      expression profile of peripheral blood mononuclear cells 
                      challenged with Theileria annulata in crossbred and 
                      indigenous cattle. Infect. Genet. Evol., 47: 9-18. https://doi.org/10.1016/j.meegid.2016.11.009
 PMid:27840256
 |  
                      |  |  
                      | 87. Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S. 
                      and Snyder, M. (2012) Linking disease associations with 
                      regulatory information in the human genome. Genome Res., 
                      22(7): 1748-1759. https://doi.org/10.1101/gr.136127.111
 PMid:22955986 PMCid:PMC3431491
 |  |  |