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Abstract
Background and Aim: Antibiotic-resistant Pseudomonas aeruginosa poses a serious health threat. This study aimed to 
investigate the antibacterial activity of peptide KW-23 against drug-resistant P. aeruginosa and its potential for enhancing 
the efficacy of conventional antibiotics.

Materials and Methods: KW-23 was synthesized from nine amino acids, specifically three tryptophans and three lysines. 
The purity of the substance was analyzed using reverse-phase high-performance liquid chromatography. The peptide was 
identified through mass spectrometry using electrospray ionization. The minimum inhibitory concentration (MIC) values of 
KW-23 in combination with conventional antibiotics against control and multidrug-resistant P. aeruginosa were determined 
utilizing broth microdilution. The erythrocyte hemolytic assay was used to measure toxicity. The KW-23 effect was analyzed 
using the time-kill curve.

Results: The peptide exhibited strong antibacterial activity against control and multidrug-resistant strains of P. aeruginosa, 
with MICs of 4.5 µg/mL and 20 µg/mL, respectively. At higher concentration of 100 µg/mL, KW-23 exhibited a low 
hemolytic impact, causing no more than 3% damage to red blood. The cytotoxicity assay demonstrates KW-23’s safety, 
while the time-kill curve highlights its rapid and sustained antibacterial activity. The combination of KW-23 and gentamicin 
exhibited synergistic activity against both susceptible and resistant P. aeruginosa, with fractional inhibitory concentration 
index values of 0.07 and 0.27, respectively.

Conclusion: The KW-23 synthesized in the laboratory significantly combats antibiotic-resistant P. aeruginosa. Due to 
its strong antibacterial properties and low toxicity to cells, KW-23 is a promising alternative to traditional antibiotics in 
combating multidrug-resistant bacteria.
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Introduction

Pseudomonas aeruginosa, a globally prevalent 
Gram-negative bacterium, significantly influences 
human health as a potent opportunistic pathogen [1]. 
Known for its adaptability and resilience, P. aeru-
ginosa is linked to various types of infections, from 
localized skin and soft-tissue infections to serious 
systemic diseases [2]. This bacterium is known for 
causing severe infections in immunocompromised 
patients, including those with cystic fibrosis, burn 
wounds, and undergoing invasive medical proce-
dures [3]. P. aeruginosa’s strong biofilm formation 
and resistance acquisition make it a major clinical 
challenge, resulting in persistent infections that are 
hard to eliminate [4]. The growing antibiotic resis-
tance in P. aeruginosa strains highlights the critical 

need for alternative treatment methods [5]. The grow-
ing antibiotic resistance of P. aeruginosa is a signifi-
cant clinical issue [6]. Utilizing multiple mechanisms, 
such as efflux pumps, impermeable membranes, and 
beta-lactamase production, the bacterium exhibits 
exceptional resistance to antibacterial agents. This 
resistance complicates treatment regimens and under-
scores the critical importance of exploring novel ave-
nues for combating P. aeruginosa infections [7].

With antibiotic resistance on the rise, antibac-
terial peptides (AMPs) have emerged as potential 
replacements for antibiotics [8]. The naturally occur-
ring AMPs, with potent antibacterial effects, are 
crucial components of the innate immune system in 
different organisms [9]. These peptides are active 
against many bacteria, including Gram-negative 
strains such as P. aeruginosa. AMPs primarily aim 
to disrupt bacterial membranes, resulting in cellular 
damage and frequently avoiding known resistance 
mechanisms. Due to their distinctive mechanism of 
functioning, AMPs are an alluring alternative for bat-
tling multidrug-resistant microbes [10]. The potential 
of AMPs to overcome P. aeruginosa resistance mech-
anisms necessitates their exploration as therapeutic 
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options. By targeting bacterial membranes and dis-
rupting essential cellular processes, AMPs can offer an 
effective strategy against strains that have developed 
resistance to traditional antibiotics [11]. The natural 
abundance of AMPs offers the potential for discov-
ering new compounds with increased specificity and 
efficacy against P. aeruginosa, thanks to the diversity 
of AMPs in nature [12].

This study aimed to create new AMPs custom-
ized against P. aeruginosa, with a focus on strains 
resistant to conventional antibiotics. We evaluated 
the effectiveness of these peptides individually and 
in conjunction with standard antibiotics toward anti-
biotic-resistant and susceptible strains of P. aerugi-
nosa. This research advances our knowledge of AMP 
effectiveness against P. aeruginosa while proposing 
potential novel therapeutic approaches for combating 
antibiotic resistance.
Materials and Methods
Ethical approval

Ethical approval was not required for this study.
Study period and location

The study was conducted in December 2023 at 
the experimental base of the University of Jordan.
Peptide design and synthesis

The peptide used in this study was obtained from 
GL Biochem Ltd., Shanghai, China, in a freeze-dried 
state following production through the solid-phase 
method. KW-23, a hex ultrashort AMP comprising six 
alternating subunits of lysine and tryptophan, is con-
jugated with hydrophobic ferulic acid moieties. The 
peptide was purified using reverse-phase high-perfor-
mance liquid chromatography with a C18 Internsil® 
column (Thermo Fisher, USA). The octadecylsi-
lyl groups column was eluted using an acetonitrile/
H2O-trifluoroacetic acid gradient at a flow rate of 
1.0 mL/min. Electrospray ionization-mass spectrom-
etry confirmed the purification and identification of 
the synthesized peptide [13]. By employing the two 
positively charged amino acids [14], the design tech-
nique lowered the peptide’s cationicity, enabling 
electrostatic contact with bacterial cells’ negatively 
charged membranes. The peptide was conjugated with 
ferulic acid to confer the hydrophobicity necessary for 
membrane permeabilization. This molecule, highly 
hydrophobic in nature, functions as an anchor for pep-
tide-membrane hydrophobic interactions. KW-23 has 
a net charge of +3 and a molecular weight of 1136.34 
Da. Figure-1 illustrates the KW-23 peptide’s structure.
Determination of minimum inhibitory concentrations 
(MICs) and minimum bactericidal concentrations 
(MBCs) for KW-23 and conventional Antibiotics

The MIC and MBC values for KW-23 and 
conventional antibiotics such as levofloxacin and 
chloramphenicol were measured. These antibiotics-ri-
fampicin, amoxicillin, clarithromycin, doxycycline, 
vancomycin, cefixime, and gentamicin-were tested 

against both strains of P. aeruginosa using the micro-
broth dilution method as per Clinical and Laboratory 
Standards Institute (CLSI) guidelines with ster-
ile 96-well polypropylene microtiter plates [15]. In 
Mueller Hinton broth (MHB), various bacterial strains 
resuscitated from frozen glycerol were cultured. 
Overnight, bacterial cultures in MHB were diluted 
to 106 colony-forming unit (CFU)/mL. 50 µL of each 
peptide and 50 µL of the diluted bacterial suspension 
were added to separate wells of 96-well microtiter 
plates containing different concentrations of KW-23. 
Each well held a replicate of six distinct peptide con-
centrations. The enzyme-linked immunosorbent assay 
plate reader (Biotech, USA) was used to determine 
bacterial growth after an 18-h incubation at 37°C by 
measuring optical density (OD) at λ = 570 nm. The 
MIC of the antibacterial agent was identified. Each 
plate contained a positive control with 50 µL bacterial 
suspension and 50 µL MHB, and a negative control 
with 100 µL MHB. 10 µL from clear negative and 
previous turbid positive wells were streaked on ster-
ile nutrient media agar. The MBC value represents the 
lowest concentration that kills 99.9% of bacteria after 
a 24-h incubation at 37°C. 15. The MICs and MBCs 
for each antibiotic were determined using the same 
method [15]. To guarantee the results’ reliability, all 
experiments were carried out in threes.
Hemolytic activity of KW-23

The hemolytic activity of KW-23 against normal 
erythrocytes was measured according to Salama [16]. 
To ensure the experiment’s robustness and reliability, 
each one was carried out 3 times. The hemolysis equa-
tion for analysis is as follows:

(A AO) % Hemol
(AX A

ys
O)

is 100−
= ×

−

Where A: Is OD 450 with the peptide solution,
A0: Is the OD 450 of the blank.
And AX: Is OD 450 of the control (0.1% Triton 
X-100).
3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium 
bromide (MTT) cell proliferation assay

In this investigation, we utilized the Vero cell 
line procured from ATCC (CCL81), a commercially 
available mammalian cell line. MTT transforms into 

Figure-1: The structure of KW-23 peptide.
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purple formazan following reduction within the cell 
by reductase enzymes metabolically active cells 
catalyze the reaction, generating purple formazan 
crystals. These purple crystals can be dissolved in 
dimethyl sulfoxide (DMSO), despite their insolubil-
ity in water. Spectrophotometry (Thermo Scientific, 
USA) measured the generated color of these crystals 
at a wavelength of 550 nm. 5 × 103 cells were seeded 
in a flat-bottomed 96-well plate for the MTT assay 
and incubated at 37°C with 5% CO2 for 18–24 h for 
attachment. The following day, the cells in the plates 
were treated with Roswell Park Memorial Institute 
(RPMI) media containing varying concentrations of 
two peptides, which were suspended at 2, 4, 6, 8, and 
10 mg/mL, and loaded with 200, 400, 600, 800, and 
1000  g/mL of these peptides. An untreated medium 
served as the control. The plates were incubated at 
37°C with 5% CO2 for 24  h. 24  h later, each well 
received 20 µL of 2.5 mg/mL MTT solution and was 
incubated with 5% CO2 at 37°C for 2–5 h. The wells 
were emptied post-incubation. 100 µL of DMSO was 
added to each well and mixed to dissolve formazan 
crystals, resulting in a clear purple solution. The plates 
were then placed on an absorbance microplate reader 
(BioTek, Winooski, VT, USA) and the absorbance at 
550 nm was measured [17].
Time killing curve

These experiments followed the method outlined 
in the M26-A document of CLSI. The bacterial sus-
pension of 5 × 105 CFU/ml was cultured in broth for 
three tubes. The first and second tubes house the test 
solution at 0.25 × MIC and 1 × MIC concentrations, 
while the third serves as the growth control. The incu-
bation was conducted for different time durations: 0, 
4, 6, 8, 10, 12, and 24 h. The dead cells percentage 
was calculated in comparison to the growth control by 
counting the number of living cells (CFU/mL) with 
the agar plate method in each tube. In general, the bac-
tericidal effect is obtained with a lethality percentage 
of 90% for 6 h, which is equivalent to 99.9% of the 
lethality for 24 h [18].
Fractional inhibitory concentration index (FICI) 
determination of KW-23 along with antibiotics

The microbroth checkerboard assay was used 
to investigate the synergistic activities of KW-23 
and antibiotics [19]. The MIC of the antibiotics 
and KW-23 combination was determined by con-
ducting the procedure in the previous section and 
adding both agents. Each experiment was repeated 
3 times. Synergism was assessed through FIC val-
ues calculated by dividing the individual inhibitory 
concentrations of each antifungal agent in a combi-
nation by their combination’s inhibitory concentra-
tion [20].

FICI = (MIC peptide in combination/MIC peptide 
alone) + (MIC fluconazole in combination/MIC 

fluconazole)

Synergistic (FIC ≤ 0.5), additive (FIC 0.5 
< FIC ≤1), indifferent (1 < FIC ≤ 4), or antagonist 
(FIC > 4).
Results
Antibacterial activity of the peptide

Table-1 shows KW-23’s 4.5  µg/mL and 
20 µg/mL activity against P. aeruginosa strains ATCC 
9027 and BAA-2108, respectively. One is a control 
strain, while the other is MDR. The MBC and MIC 
values were identical for both bacterial strains. The 
MIC and MBC values of the eight distinct antibiotics 
are tabulated in Table-1.
Hemolytic activity of the peptides

The hemolysis percentage of the peptides is dis-
played in Table-2.
MTT cell proliferation

The half-maximal inhibitory concentration value 
for KW-23 in the cytotoxicity assay was 148 for the 
conjugate (Figure-2).
Time-kill curve

Figure-3 shows that KW-23 reduced the initial 
bacterial count by three logs.
Antibacterial activity of KW-23 along with conven-
tional antibiotics

The findings in Table-3 demonstrate the impact 
of various peptide KW-23/antibiotic combinations on 
both bacterial strains. In the combination of KW-23 and 

Table-1: The MICs and MBCs (µg/mL) of KW‑23 and the 
nine antibiotics against the tested bacterial strains.

Compound MIC (MBC) (µg/mL)

Control  
P. aeruginosa 

(9027)

MDR P. aeruginosa 
(BAA‑2108)

KW‑23 4.5 (4.5) 20 (20)
Levofloxacin 9 (9) 30 (30)
Chloramphenicol 80 (105) 150 (220)
Rifampicin 15 (15) 50 (50)
Amoxicillin 25 (25) 200 (200)
Clarithromycin 125 (125) 125 (125)
Doxycycline 6 (25) 34 (45)
Vancomycin 200 (350) 260 (400)
Cefixime 6 (10) 82 (110)
Gentamicin 2 (2) 20 (20)

P. aeruginosa=Pseudomonas aeruginosa, MIC=Minimum 
inhibitory concentration, MBC=Minimum bactericidal 
concentrations, MDR=Multidrug resistant

Table-2: Hemolytic activity of KW‑23 against human 
erythrocytes after 60 min’ incubation. 

Concentration (μM) Hemolysis %

5 0
10 0
20 0
40 0
60 0
80 1
100 3

The results were recorded at λ = 450 nm 
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Table-3: The checkerboard results of the effect of combinations of the peptide KW‑23 with the antibiotics used in the 
study against the both bacterial strains used.

Bacteria strains Antibiotics MIC FICI*

Antibiotics Antibiotics/KW‑23 KW‑23 KW‑23/antibiotics

Control P. aeruginosa Levofloxacin 9 2 4.5 1.5 0.6
Chloramphenicol 80 15 4.5 2 0.63
Rifampicin 15 3 4.5 0.5 0.3
Amoxicillin 25 10 4.5 0.25 0.45
Clarithromycin 125 65 4.5 2 0.96
Doxycycline 6 2 4.5 0.125 0.36
Vancomycin 200 175 4.5 3.5 1.65
Cefixime 6 0.5 4.5 1 0.3
Gentamicin 2 0.125 4.5 0.025 0.07

MDR P. aeruginosa Levofloxacin 30 15 20 10 1
Chloramphenicol 150 60 20 15 1.15
Rifampicin 50 20 20 5 0.65
Amoxicillin 200 120 20 18 1.5
Clarithromycin 125 80 20 5 0.9
Doxycycline 34 10 20 2 0.4
Vancomycin 260 150 20 15 1.3
Cefixime 82 40 20 12 1.08
Gentamicin 20 5 20 0.5 0.27

Synergistic (FIC ≤ 0.5), additive (FIC 0.5 < FIC ≤ 1), indifferent (1 < FIC ≤ 4), or antagonist (FIC > 4). FICI=Fractional 
inhibitory concentration index, P. aeruginosa=Pseudomonas aeruginosa, MIC=Minimum inhibitory concentration, 
MDR=Multidrug resistant
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Figure-3: Time killing curve.

gentamicin, the most significant results were achieved 
against both control and MDR P. aeruginosa strains, 
with FICI values of 0.07 and 0.27, respectively.
Discussion

Due to the intrinsic antibiotic resistance of 
P. aeruginosa and its status as a global health cri-
sis due to multidrug-resistant pathogens, innova-
tive strategies are needed to combat this notorious 
opportunistic pathogen [21, 22]. Novel AMPs were 
synthesized, specifically targeting P. aeruginosa 
strains resistant to traditional antibiotics. AMPs, 
known for their broad-spectrum activity and abil-
ity to surpass resistance mechanisms, present an 
attractive option [23]. Safety concerns have largely 
hindered drug development for these peptides [24]. 

Based on the structure-function relationship insights 
of known AMPs [25], this study proposes a strategy 
for designing and synthesizing peptides. The ability 
of these peptides to treat both antibiotic-resistant and 
susceptible strains of P. aeruginosa was assessed. The 
novel peptide, KW-23, exhibits antibacterial activity 
similar to a traditional antibiotic while causing min-
imal harm to normal erythrocytes. KW-23’s MIC 
and MBC surpassed the antibiotics of diverse chem-
ical classes against both strains. Both MIC and MBC 
values were identical, signifying bactericidal effect. 
The main cause of antibacterial activity in analog 
peptides lies in their ability to permeabilize bacterial 
cell membranes [26]. The KW-23 membrane-pene-
trating ability is most likely due to the use of charge 
segregation from the hydrophobic center [27]. The 
unspecified bacterial membrane disruption mech-
anism of the designed peptide is unlikely to trigger 
rapid resistance, thereby increasing its therapeutic 
duration. At concentrations up to 100 μg/mL, KW-23 
does not cause human erythrocyte lysis, making it 
preferential for bacterial membranes over host cells. 
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6K-F17 selectively targets bacteria and is non-hemo-
lytic to human erythrocytes, even in high concentra-
tions above 500 μg/mL. Beaudoin et al. [28] found 
that electrostatic attraction to bacterial membranes 
increases the hydrophobicity of KW-23 beyond the 
threshold for spontaneous membrane penetration. The 
peptide demonstrated rapid bactericidal action against 
both strains within 15 min and continued effectiveness 
for up to 24 h, making it appealing as an antibacterial 
agent. In our study, the killing rate was akin to the 
kinetics observed with soluble peptides as observed 
by Aiemsaard et al. [29]. Release of ions and larger 
cellular molecules ensues when the peptide disrupts 
the cytoplasmic membrane [30]. The new compound 
KW-23 exhibits promising anti-MDR activity against 
P. aeruginosa. By decreasing individual drug dosages, 
delaying the development of resistance, and poten-
tially eradicating resistant strains, combination ther-
apy aims to minimize adverse effects [31]. The most 
effective outcomes were achieved when KW-23 was 
used in conjunction with gentamicin. Utilizing this 
combination may open up new treatment possibilities.

In P. aeruginosa, KW-23 in combination with 
doxycycline, chloramphenicol, and clarithromycin 
exhibited synergistic and partial synergy effects. Short 
peptides likely enhance antibiotic effectiveness by 
targeting the bacterial membrane. This effect is also 
attributed to the direct antibacterial activity of the pep-
tide (KW-23) through interactions with intercellular 
targets, such as DNA, after entering the bacteria [32]. 
With amoxicillin, cefixime, rifampicin, and levoflox-
acin, synergy was demonstrated against the control 
strain, but not against MDR P. aeruginosa. This is 
expected, probably due to the presence of the AmpC 
β-lactamase and the MexAB-OprM efflux pump in this 
bacterium [33]. Within 2 h, KW-23 kills P. aeruginosa 
by disrupting its membranes and subsequently com-
plexing with intracellular negatively charged compo-
nents, including DNA and proteins [28]. Impairment 
of small molecule drug binding to targets by KW-23 
could explain the lack of synergistic effects.
Conclusion

Developing new AMPs against antibiotic-resis-
tant P. aeruginosa is crucial for resolving the global 
antibiotic resistance issue. This study expands our 
knowledge of AMP’s actions and offers promising 
opportunities for new treatment strategies against mul-
tidrug-resistant bacteria. Synthesized peptides’ poten-
tial success could lead to novel clinical treatments, 
tackling antibiotic resistance. Future research should 
focus on developing new AMPs to combat antibiot-
ic-resistant P. aeruginosa, leveraging the promising 
potential observed in this study. This study is limited 
by its primary focus on in vitro testing, necessitating 
further in vivo studies and consideration of resistance 
development and production feasibility for practical 
clinical application.
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