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A B S T R A C T

Background and Aim: Dengue fever, primarily transmitted by Aedes aegypti, remains a critical public health challenge 
in Indonesia, with periodic outbreaks exacerbated by widespread insecticide resistance. Resistance to organophosphates 
and pyrethroids limits vector control efforts, necessitating updated insights into resistance patterns and their genetic 
underpinnings. This study aimed to evaluate and map insecticide resistance and associated genetic mutations in Ae. aegypti 
across Indonesia, providing actionable insights for vector management strategies.

Materials and Methods: This systematic review adheres to Preferred Reporting Items for Systematic reviews and Meta-
Analyses guidelines, encompassing studies from 2010 to 2023 identified through PubMed, Scopus, EBSCOhost, and Embase. 
Keywords targeted Ae. aegypti, insecticide classes, resistance, and Indonesian regions. Inclusion criteria focused on field-
derived populations subjected to World Health Organization bioassays for organophosphates (malathion and temefos) and 
pyrethroids (cypermethrin, deltamethrin, etc.), alongside analyses of knockdown resistance (kdr) mutations in the voltage-
gated sodium channel (Vgsc) and acetylcholinesterase-1 (Ace-1) genes. Data synthesis included resistance trends, spatial 
mapping, and allele frequency analyses.

Results: Resistance to malathion and temefos is extensive, with sporadic susceptibility in specific districts. Pyrethroid 
resistance is pervasive, particularly for cypermethrin and lambda-cyhalothrin, with deltamethrin exhibiting isolated 
susceptibility. Genetic analyses reveal Vgsc mutations (V1016G, F1534C) as key drivers of pyrethroid resistance, while Ace-1 
mutations remain unreported. The evolution of resistance correlates with indiscriminate insecticide usage, urbanization, 
and climatic factors.

Conclusion: The growing prevalence of insecticide resistance in Ae. aegypti underscores the urgent need for integrated 
vector management strategies. These should incorporate insecticide rotation, resistance monitoring, and community 
engagement to mitigate resistance and support sustainable dengue control efforts in Indonesia.
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INTRODUCTION

Dengue hemorrhagic fever (DHF) – caused by the 
dengue virus, namely, dengue-1, dengue-2, dengue-3, 
and dengue-4 – is a public health issue in Indonesia. 

Aedes aegypti is the primary vector of this illness [1]. 
Increases in cases frequently occur at several locations, 
particularly at the beginning of and throughout the 
rainy season, when environmental conditions facilitate 
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the proliferation of mosquito vectors. Ae. aegypti 
mosquitoes are active throughout the day and tend 
to nest in close proximity to bathtubs, trashcans, and 
other water containers found in and around houses. 
Efficient vector control measures are crucial for halting 
the transmission of dengue [2, 3].

Insecticidal fumigation (fogging) is one of the 
most common control methods for disease spread. 
This method employs a fogging machine to disperse 
small insecticide particles into the air to kill adult 
mosquitoes, which are responsible for causing the 
disease, while reducing the possibility of transmission 
of the dengue virus [4, 5]. In addition, larvicides 
are combined with chemical insecticides, such as 
temefos, by sowing them into water reservoirs to 
kill the mosquitoes at the larval stage. However, the 
widespread and repeated use of insecticides has 
resulted in insecticide resistance in vector mosquitoes. 
This resistance hinders dengue control efforts because 
mosquitoes develop defense mechanisms against these 
chemicals, and previously effective insecticides do not 
have the desired effect [6, 7]. The indiscriminate use of 
insecticides has caused significant toxic environmental 
impacts, including cumulative effects on ecosystems. 
Insecticides accumulated in soil, water, and air can 
damage various trophic layers in the food chain, 
ranging from low-level organisms such as non-target 
insects and plankton to top-level predators through 
bioaccumulation and biomagnification processes [8]. 
In addition, backfire effects on humans have also been 
widely demonstrated, such as health disorders caused 
by exposure to insecticide residues, including the risk 
of neurological disorders, hormonal imbalances, and 
increased cancer incidence. Studies have shown that 
the uncontrolled use of insecticides also contributes 
to the decline of beneficial insect populations, such 
as pollinators, which disrupt ecosystem balance and 
agricultural productivity [9–11]. Therefore, proper 
management and monitoring of insecticide use is 
essential to prevent adverse impacts on the environment 
and human health. Several factors can cause insecticide 
resistance in Ae. aegypti mosquitoes. Excessive use 
of insecticides, excessive fumigation, and selection 
pressure on mosquito populations can increase the 
selection pressure. In addition, resistance growth 
can be influenced by environmental factors such as 
climate [12]. Insecticide resistance has a major impact on 
mosquito control. The reduced effectiveness of fogging 
and larvicides also escalates the risk of increased vector 
mosquito populations; hence, dengue control programs 
may become less effective, and disease cases may 
continue to increase. The geographic and demographic 
characteristics of Indonesia make it difficult to control 
dengue fever [13, 14]. Environmental diversity, limited 
resource availability, and high population mobility are 
additional challenges to managing insecticide resistance 
at the local level [15].

Therefore, a thorough understanding of insecticide 
resistance and its mechanisms is important in 
various regions of Indonesia. These changes have 
allowed health experts and researchers to assess the 
effectiveness of insecticides, create better resistance 
management plans, and adapt vector control programs 
to local circumstances. Therefore, it is important 
to involve the community in controlling insecticide 
resistance [16, 17]. This can be achieved by educating 
the public on the dangers of uncontrolled insecticide 
use, encouraging dengue prevention habits at the 
household level, and actively participating in vector 
control programs. Managing insecticide resistance 
requires a comprehensive approach involving 
collaboration between researchers, health institutions, 
and interested parties [17–19]. 

Updated research on insecticide resistance in 
Indonesia should be conducted to determine the 
distribution of various types of insecticides. This 
study aimed to estimate and map the prevalence of 
insecticide resistance, as well as knockdown resistance 
(kdr) mutations, in Ae. aegypti in Indonesia. We 
examined three common kdr mutations (F1534C, 
V1016G, and S989P) in Ae. aegypti. The analysis of A. 
albopictus using World Health Organization (WHO) and 
kdr techniques was not conducted due to the limited 
sample size. Understanding the current status and 
distribution of vector control is expected to help plan 
vector management in Indonesia.

MATERIALS AND METHODS

Ethical approval
This systematic review was conducted in 

accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses statement [20].

Study period and location
The search period began in December 2023 

through June 2024 and data analysis began in July 
through August 2024. Data were processed at the 
Department of Environmental Health, Faculty of Public 
Health, Universitas Airlangga.

Search strategy
We reviewed published studies on the prevalence 

of insecticide resistance in Ae. aegypti. Four databases 
– PubMed, Scopus, EBSCOhost, and Embase were 
used for the search. Search keywords were created by 
combining “Aedes aegypti” OR “Organophosphates” OR 
“Pyrethroids” AND “Resistance” OR “Indonesia.” The 
article you are looking for is in English or Indonesian.

Study selection process
The collected articles were selected by the authors 

MRR, KC, and BJ. The articles were then verified and 
carefully reviewed by RY, and HB considering the 
methods and results and analysis used. Articles were 
then manually tabulated by creating detailed tables 
on location, year, mosquito species, resistance status, 
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method of resistance testing, type and class of insecticide, 
and resistance rate if any. The results were then checked 
again with MCH for final verification. Inclusion criteria 
were studies on resistance testing in Ae. aegypti in 
Indonesia. The articles included information on sample 
size and positive results. The use of insecticide bioassays 
using the WHO Tube test method with organophosphate 
(malathion 5%, malathion 5%, temefos) and pyrethroid 
(cypermethrin, alpha-cypermethrin, lambda-cyhalothrin, 
and deltamethrin) groups and investigating the presence 
of kdr mutations in Ae. aegypti at larval and adult stages 
were included in the criteria of this study. Exclusion 
criteria were research records marked before 2010, 
irrelevant research subjects, no prevalence information, 
no report on resistance test, outside Indonesia, and 
unclear results. In total, 9,720 scientific publications were 
identified. After removing records after duplicates were 
removed, records were screened, and full-text articles 
were assessed for eligibility, studies included in the 
quantitative synthesis were 54 articles (Figure 1).

Data extraction and synthesis
Study eligibility

Articles were extracted by creating an agreed table, 
namely, location, year, mosquito species, resistance 
status, method of resistance testing, type and class of 
insecticide, and resistance rate. Data were synthesized 
in a narrative way by organizing studies based on 
relevant characteristics, summarizing the main findings, 
identifying patterns and differences in study results, 
and conducting analysis and conclusions.

Bias assessment
We used the JBI Critical Appraisal Tools, developed 

by the Joanna Briggs Institute, to avoid bias. The 

assessment was conducted independently by two 
researchers using a list of questions relevant to each type 
of study included, such as experimental, observational, 
or cross-sectional studies. Important aspects such as 
completeness of research methods, clarity of inclusion 
and exclusion criteria, validity of measurements, 
potential selection bias, and transparency in reporting 
results. If there are differences, a third researcher was 
involved as an arbitrator. This process aims to minimize 
subjective bias and ensure that only studies with robust 
and valid methodologies are used in the analysis. In 
addition, we also considered possible publication bias 
by evaluating gray literature.

Statistical analysis
Data for each article were synthesized using 

Humata AI (https://app.humata.ai/) to review each 
eligible article, then data were transferred to Microsoft 
Excel 2019 (Microsoft, Washington, USA) to tabulate 
location, year, mosquito species, resistance status, 
resistance testing method, insecticide type and class, 
and resistance level. Location, frequency of genetic 
mutations, and regional distribution and records. Spatial 
analysis in thematic maps was conducted using ArcGIS 
Desktop (ArcMap) version 10.8.2 to map the distribution 
of resistance across districts in Indonesia. [21].

RESULTS

Dengue cases in Indonesia
Figure  2 shows the trend in the number of DHF 

cases and the number of districts reporting cases 
each year in Indonesia from 1968 to 2023. The graph 
shows a significant spike in cases in 2016, followed by 
another increase in 2019 and 2023. The overall trend 
shows annual fluctuations with a tendency for cases to 

Records identified through
database searching (n = 9270)

Additional records identified
through other sources (n = 29)

Records after duplicates removed (n = 9299)

Records screened (n = 4431) Excluded records (n = 4132)

Full-text articles excluded,
with reasons (n = 176)

Full-text articles assessed for
eligibility (n = 215)

Studies included in quantitative
synthesis (n = 54)
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Figure 1: Preferred Reporting Items for Systematic Reviews: Flow diagram illustrating selection methodology.
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increase over time. The graph also depicts a consistent 
increase in districts reporting DHF cases, indicating the 
widespread spread of the disease across Indonesia. 
Figure 3 consists of two panels depicting the trend of 
DHF in Indonesia from 2019 to 2024. Figure 3a shows the 
number of dengue cases recorded annually. The highest 
peak occurred in 2020, followed by a decrease in cases 
in the following year. However, although the number of 

cases decreased, there was a rebound in certain years, 
displaying an inconsistent pattern. Figure 3b shows the 
number of DHF deaths over the same period. Unlike 
the number of cases, the trend of deaths was relatively 
stable or slightly decreased each year. This graph shows 
the difference in the pattern between the fluctuating 
number of cases and the more stable number of deaths 
over time.
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Figure 2: Number of dengue cases and number of dengue-infected districts annually from 1968 to 2023 [Source: Ministry 
of Health, Indonesia].
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Figure 3: Dengue trends 2019–2024 (a) cases and (b) fatalities [Source: The map was generated using ArcGIS 10.8.2].
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Spread of resistance in Indonesia
Malathion resistance is widespread in Indonesia 

[22–32], and a few districts still contain vulnerable 
populations, namely, Kudus [23], Gorontalo, and several 
districts in Southeast Sulawesi (Figure 4) [33]. The maps 
presented here focus on diagnostic malathion doses of 
0.8% and 5%.

The use of temefos is well established in 
Indonesia; most districts and cities contain resistant 
populations, with a primary distribution in Sumatra and 
Java. As many as 30 (29%) districts/cities have a tolerant 
status, while 22  (22%) districts still contain vulnerable 

populations. Districts/cities with vulnerable status 
include Banda Aceh City, Lhoksemauwe City, Metro City, 
Kotawaringin Timur, Kotawaringin Barat, Palangkaraya 
City, Hulu Sungai Selatan, Tabalong, Mempawah, 
Bontang, Samarinda, Balikpapan, Palopo, Makassar, 
Palu, Tarakan, Nunukan, Bulungan, Ternate, Sorong, 
Jayapura, and Jayapura City (Figure 5) [33–40].

Figure  6 illustrates the cypermethrin resistance 
status. Resistance to cypermethrin has been reported in 
almost all districts of Borneo, Sumatra, and Sulawesi [33]; 
except in Java, where no resistant mosquito populations 
were found in Semarang, Pemalang, and Tegal [41].

Figure 4: Malathion resistance map (0.8% and 5%) [Source: The map was generated using ArcGIS 10.8.2].

Figure 5: Temefos resistance status (0.02%) [Source: The map was generated using ArcGIS 10.8.2].
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The alpha-cypermethrin resistance status varies 
across Indonesia (Figure 7); however, most districts/cities 
contain resistant populations. The districts still reported 
to contain vulnerable populations include Semarang, 
Kudus, Surakarta, Jepara [41], Batusangkar [42], and 
Pariaman in West Sumatra [43].

The resistance status of mosquitoes against 
lambda-cyhalothrin in Indonesia is predominantly 
resistant, excluding Balikpapan on the island of 
Kalimantan, where the status is believed to be tolerant 
(Figure 8) [33, 44]. Meanwhile, mosquitos were found 
to be susceptible to the insecticide deltamethrin; 
specifically, 22 districts/cities [33, 41] were identified 

as vulnerable: Padang, Bengkulu, Lubuk Linggau, Rejang 
Lebong, Metro, Tanjung Karang, Pringsewu, Batam, 
Tanjungpinang, Tanjung Balai, Pangkal Pinang, West 
Bangka, Mempawah, Kubu Raya, Ketapang, Merauke, 
Jayapura, Sorong, Sorong, Ternate, and Tidore (Figure 9).

Detection of kdr mutations in voltage-gated sodium 
channel (Vgsc) and acetylcholinesterase-1 (Ace-1) genes

Table 1 [23, 25–29, 31, 32, 41–43, 45–55] presents 
the genetic changes linked to pesticide resistance in 
the Ae. aegypti mosquito population in Indonesia. 
This table contains information on mutations in Vgsc, 
which is linked to mutations in the kdr and Ace-1 genes. 

Figure 6: Resistance status of cypermethrin (0.05%) [Source: The map was generated using ArcGIS 10.8.2].

Figure 7: Alpha-cypermethrin 0.025% resistance status [Source: The map was generated using ArcGIS 10.8.2].
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The prevalence of kdr mutations, specifically V1016G 
and F1534C, in different mosquito populations from 
different regions in Indonesia, including Kuningan, 
Padang, Samarinda, Pontianak, Denpasar, and 
Mataram, where its allele frequency reached 1.00. 
In contrast, no V1016G was detected in Dompu and 
West Manggarai, indicating susceptibility in these 
populations. The F1534C mutation has been reported 
in areas such as Banjarmasin, Makassar, and Muaro, 
with varying frequencies, contributing to different 
levels of resistance. Cities such as Jakarta, Yogyakarta, 
and Surabaya showed both mutations, while Central 
Java areas such as Semarang and Tegal also showed 

a significant frequency of V1016G (91.2%) alongside 
S989P and F1534C. In Palu, the V1016G mutation was 
present, but no mutations in the Ace-1 gene were 
detected. The table also includes information on 
the prevalence of resistance alleles at each location, 
demonstrating variations in the extent of resistance 
observed in different regions.

DISCUSSION

Cumulatively, the number of dengue cases has 
been increasing annually, indicating that the dengue 
virus is increasingly spreading across various regions. 
This increase is likely influenced by various factors, such 

Figure 8: Resistance status of lambda-cyhalothrin (0.03%) [Source: The map was generated using ArcGIS 10.8.2].

Figure 9: Resistance of deltamethrin to 0.025% [Source: The map was generated using ArcGIS 10.8.2].
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Table 1: Detection of Kdr mutations in Vgsc and Ace‑1 genes of Ae. aegypti mosquitoes in Indonesia.

No. Location Mutation Year of 
publication

Frequency of Resistant 
Alleles

Notes References

1 Holy S989P, V1016G 2016 S989P: 25%; V1016G: 
91.2%, F1534C: Not 
detected

Allele frequencies reflect the extent 
of genetic diversity that contributes to 
resistance to pyrethroid pesticides.

[23]

2 Jepara S989P, V1016G, 
and F1534C

2016 S989P: 25%, V1016G: 
91.2%, F1534C: 3%

Allele frequencies reflect the extent 
of genetic diversity that contributes to 
resistance to pyrethroid pesticides.

[23]

3 Surakarta S989P, V1016G, 
and F1534C

2016 S989P: 25%, V1016G: 
91.2%, F1534C: 3%

Allele frequencies reflect the extent 
of genetic diversity that contributes to 
resistance to pyrethroid pesticides.

[23]

4 Banjarmasin V1016G, F1534C 2018 V1016G: G: 0.545, V: 0.455 The V1016G mutation exhibited a notable 
correlation with the permethrin resistance 
phenotype, whereas the F1534C mutation 
was not significantly associated with this 
resistance.

[25]
F1534C: C: 0.302, F: 0.698

5 Jakarta V1016G, F1534C 2017 V1016G: Homozygous 
GG: 0.40%, Heterozygous 
VG: 0.48%; total G allele 
frequency: 0.64%

High resistance to permethrin; V1016G 
was significant regarding resistance, while 
F1534C was not significant.

[26]

F1534C: Homozygous 
CC: 0.03%, Heterozygous 
FC: 0.033%; total C allele 
frequency: 0.20%

6 Denpasar, Bali F1534C, S989P, 
and V1016G

2017 F1534C: Homozygous CC: 
0.21, Heterozygous FC: 
0.25 (resistant phenotype)

The Ae. aegypti population in Denpasar 
exhibited high resistance to permethrin. 
The frequency of F1534C, S989P, and 
V1016G mutations was significantly 
associated with resistance.

[27]

S989P: Half of the 
permethrin‑resistant 
phenotype with P allele 
frequency
V1016G: OR: 2.49

7 Palu, Central 
Sulawesi, 
Indonesia

V1016G, Ace‑1 
(G119)

2019 V1016G: Found in Palu. 
G119 (Ace‑1): Found in 
Palu.

The V1016G mutation in Vgsc gene was 
detected in Palu, indicating resistance 
to pyrethroid insecticides. There were 
no mutations in Ace‑1 in Palu. The 
G119 wild‑type allele suggests that 
organophosphate resistance likely occurs 
through other mechanisms; in particular, 
metabolic resistance.

[28]

8 Surabaya V1016G, F1534C, 
and AChE

2021, 2021 Not mentioned Research indicates mutations in the 
Vgsc and AChE genes that contribute to 
insecticide resistance. Understanding 
genetic mutations is important for more 
effective vector control.

[29]

9 Yogyakarta F1565C, V1023G, 
and S996P

2018 F1565C: Very low 
frequency; only one 
individual was homozygous 
(1565C/1565C) among 151 
samples. V1023G: 83% 
homozygous (GG) | S996P: 
17% homozygous

The Aedes aegypti population in 
Yogyakarta exhibited high resistance to 
deltamethrin and permethrin. The V1023G 
and S996P mutations were associated 
with resistance, whereas the F1565C 
mutation was not.

[31]
2021, 2024 [47]

[48]

V1023G: Homozygotes 
1023G/1023G dominate at 
58% in Season 1

[49]

S996P: homozygous 
frequency of 9.27%

[50]

10 Jambi City F1534C, V1016G 2022 It was not specifically 
stated, but the V1016G 
mutation was more 
common than the F1534C 
mutation.

Overall, 30% of the mosquitoes exhibited 
heterozygous F1534C mutations, whereas 
none exhibited homozygous mutations. 
Regarding the V1016G mutation, 59.1% of 
the samples exhibited this mutation.

[32]

(Contd...)
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Table 1: (Continued).

No. Location Mutation Year of 
publication

Frequency of Resistant 
Alleles

Notes References

11 Batang Hari 
Regency, 
Batang, 
Thailand

F1534C, V1016G 2022 It was not specifically 
stated, but the V1016G 
mutation was more 
common than the F1534C 
mutation.

Overall, 40% of the mosquitoes exhibited 
the heterozygous F1534C mutation; none 
exhibited the homozygous mutation. The 
V1016G mutation was also more prevalent 
than the F1534C mutation.

[32]

12 Semarang, 
Semarang 
Regency; 
Tegal, 
Pemalang 
Regency

S989P, V1016G 2023 S989P: 57.9% | V1016G: 
78.9%

The S989P mutation was detected in 
57.9% of samples, whereas the V1016G 
mutation was present in 78.9% of 
samples. There are no known mutations 
in Ace‑1. Vgsc mutations are a prevalent 
route to resistance to pesticides in certain 
mosquito populations.

[41]

13 Padang, West 
Sumatra

VGSC (T506T), 
Ace-1 (G119S, 
T506T)

2019 VGSC (T506T): TT 
(65.21%), TA (26.08%), 
AA (8.69%) Ace-1: G119S 
(Not detected), T506T: TT 
(65.21%), TA (26.08%), AA 
(8.69%)

In Padang, VGSC mutations at location 
T506T were detected with allele 
frequencies of TT (65.21%), TA (26.08%), 
and AA (8.69%). In the Ace-1 gene, there 
was no mutation at the G119S location, 
but a new mutation was found at T506T 
with the same frequency as VGSC.

[42]  

14 West Sumatra F1534C and other 
variants

2018 Not mentioned Multiple kdr mutations were observed in 
the Ae. aegypti population.

[43, 45]

15 Magelang 
City, Central 
Java.

S989P, V1016G  Not mentioned Resistance to pyrethroid insecticides, 
particularly permethrin, was linked to 
mutations in the Vgsc IIS6 gene.

[45]

16 Kanagarian 
Salido, Pesisir 
Selatan 
Regency, West 
Sumatra, 
Indonesia

No resistance 
‑related mutations 
were found in the 
Ace‑1 gene; a point 
mutation at codon 
506 was found

2022 Not mentioned A high level of resistance to temefos was 
observed, resulting in a mortality rate of 
91.67%. 

[46]

17 Makassar V1016G, F1534C 2020 V1016G: G: 0.58% 
(resistant group), G: 0.45% 
(susceptible group)

The Ae. aegypti population in Makassar 
exhibited resistance to permethrin.

[51]

F1534C: C: 0.23% (resistant 
group)

18 Kuningan V1016G 2019 V1016G allele frequency: 
1.00

The V1016G mutation was the most 
dominant genotype in Kuningan.

[52]

19 Padang V1016G 2019 V1016G allele frequency: 
1.00

The V1016G mutation was the most 
dominant genotype in Padang.

[52]

20 Samarinda V1016G 2019 V1016G allele frequency: 
1.00

The V1016G mutation was the most 
dominant genotype in Samarinda.

[52]

21 Pontianak V1016G 2019 V1016G allele frequency: 
1.00

The V1016G mutation was the most 
dominant genotype in Pontianak.

[52]

22 Denpasar V1016G 2019 V1016G allele frequency: 
1.00

The V1016G mutation was the most 
dominant genotype in Denpasar.

[52]

23 Mataram V1016G 2019 V1016G allele frequency: 
1.00

The V1016G mutation was the most 
dominant genotype in Mataram.

[52]

24 Dompu V1016G 2019 V1016G allele frequency: 
0.00

The V1016G mutation was not detected in 
Dompu.

[52]

25 West 
Manggarai

V1016G 2019 V1016G allele frequency: 
0.00

The V1016G mutation was not detected in 
West Manggarai.

[52]

26 East Sumba V1016G 2019 V1016G allele frequency: 
0.40

The V1016G mutation was detected in 
East Sumba.

[52]

27 Semarang, 
Central Java.

S989P, V1016G, 
and F1534C

2021 S989P: 25%, V1016G: 
91.2%, F1534C: 3%

Allele frequencies reflect the extent 
of genetic diversity that contributes to 
resistance to pyrethroid pesticides.

[53]

28 Muaro, Jambi 
Regency, 
country office

F1534C, V1016G 2021 F1534C: C: 0.225, F: 
0.775|V1016G: G: 0.45, 
V: 0.55

Overall, 35% of mosquitoes carried the 
heterozygous F1534C mutation, whereas 
25% carried the homozygous mutation. 
The V1016G mutation was more common, 
with 40% of the mosquitoes exhibiting the 
heterozygous mutation.

[54]
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as socioeconomics [56], the environment (including 
climate change [57]), urbanization [58], and resistance 
of the Ae. aegypti mosquito to insecticides [24]. The 
number of districts reporting dengue cases has also 
increased, indicating that an increasing number of areas 
are affected by the virus. In addition, the graph displays 
peak cases in certain years, which could be related to the 
dengue cycle phenomenon [59] or major outbreaks [60]. 
Although there are certain periods when dengue cases 
decrease, the overall trend still demonstrates an 
increase in cases over time. This transient decrease may 
only indicate temporary management of the situation; a 
subsequent increase in the following years indicates the 
necessity for more efficient and enduring management 
methods [61], considering ecological factors such 
as higher rainfall, temperature, and humidity boost 
mosquito breeding while urbanization creates more 
breeding sites [62]. Epidemiologically, population 
mobility spreads the virus to new areas, and factors 
such as limited public awareness, weak vector control, 
and insecticide resistance further fuel transmission [63]. 
These combined factors make dengue management 
more challenging, emphasizing the need for sustainable 
dengue control strategies.

Between 2019 and 2024, dengue fever cases 
varied, with the highest number observed in 2020. This 
increase can be attributed to a surge in the number 
of Ae. aegypti mosquitoes, which are the primary 
carriers of dengue fever. Climate change and other 
environmental conditions that facilitate mosquito 
growth likely contributed to this increase. Following 
the peak in 2020, a subsequent decline in cases was 
observed in subsequent years; however, this decline 
was not uniform, and an increase in cases was still 
periodically observed.

Meanwhile, fatality trends (number of deaths) 
demonstrated that although the number of dengue 
fever cases fluctuates, the fatality rate tends to 
remain stable or decrease slightly from year to year. 
The observed reduction in fatality rates may reflect 
improvements in the quality of health services and 
management of dengue fever cases in Indonesia [64]. In 
addition, this approach can increase public awareness 
regarding the prevention and early treatment of dengue 
fever symptoms [53, 65]

The development of insecticide resistance in Ae. 
aegypti has emerged as a major obstacle to the management 

of dengue infections in Indonesia. Insecticides are widely 
used as the primary means of controlling mosquito 
populations. This includes implementing government-
led fogging initiatives, applying insecticides in the 
agricultural sector and industrial settings (such as hotels 
and corporations), and using them at the household level 
[66]. Excessive and unregulated use has resulted in the 
emergence of resistance in the Ae. aegypti mosquito, 
which directly contributes to an increase in dengue cases 
[66–68]. Mosquitoes that are insecticide-resistant can 
survive despite exposure, minimizing the effectiveness 
of mosquito control programs and potentially causing a 
wider spread of dengue.

The development of insecticide resistance in 
Ae. aegypti mosquito populations in Indonesia is strongly 
linked to the extensive use of pesticides across multiple 
sectors. The use of insecticides in agriculture can lead 
to environmental contamination, which interacts 
with mosquito populations, thereby enhancing their 
adaptability and the development of resistance [69]. In 
industrial sectors – such as hotels and companies – as 
well as in households, insecticides are used as part of 
hygiene management to control insect populations [70]. 
This widespread and repeated use of insecticides 
strengthens the selection pressure on mosquitoes and 
promotes the development of resistance [71].

In Indonesia, insecticides from organophosphate 
and pyrethroid groups are commonly used in various 
mosquito control applications [32]; organophosphates, 
such as malathion and temefos, are widely used 
in mosquito larval control programs [72]. Given 
the reported resistance to malathion, the use of 
insecticides for fogging currently requires more 
insecticides containing active pyrethroid ingredients. 
Organophosphate groups have been widely used in 
Indonesia for decades until 2000. After 2000, the 
insecticides used were mainly from the pyrethroid class. 
Pyrethroids are used in dengue vector control programs 
owing to their low prices; thus, exposure to pyrethroid 
insecticides is widespread with the use of household 
mosquito repellents. Mosquito coils, the most popular 
household insecticide, are widely used because they are 
inexpensive and simple to purchase, costing Rp 5.000 
(USD 0.35) weekly. Almost all household mosquito coils 
in Indonesia contain active pyrethroids [73].

Malathion was generally used in fogging programs 
for decades until the 2000s, whereas temefos was 

Table 1: (Continued).

No. Location Mutation Year of 
publication

Frequency of Resistant 
Alleles

Notes References

29 Palembang Val1016Ile 2012 No specifics were 
mentioned.

A point mutation in the Vgsc gene at the 
Val1016Ile position was identified as a 
marker of resistance to synthetic pyrethroid 
insecticides. No mutations were detected at 
the Val1016Gly position.

[55]

Kdr=Knockdown resistance, Vgsc=Voltage‑gated sodium channel, Ace‑1=Acetylcholinesterase‑1, Ae. aegypti=Aedes aegypti
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used as a larvicide in water sources. Pyrethroids – 
including cypermethrin, alpha-cypermethrin, lambda-
cyhalothrin, and deltamethrin – are widely used in 
fogging programs, agriculture, industry, and households 
because they effectively kill adult mosquitoes [74].

Resistance to malathion and some insecticides 
from the pyrethroid group has been observed, indicating 
that existing control approaches must be adapted [27]. 
This resistance reduces the effectiveness of existing 
insecticides; therefore, a more comprehensive control 
strategy is needed, including the rotation of insecticide 
use, regular monitoring of resistance, and a combination 
of other control methods – such as environmental 
management and public education – to reduce the 
dependence on insecticides [71]. Thus, a holistic and 
sustainable approach to dengue control is required in 
Indonesia.

Genetic alterations in mosquito populations 
are closely associated with the development of 
insecticide resistance. Resistance is primarily caused 
by mutations in the Vgsc gene, which is referred to as 
kdr [75]. The kdr mutation alters the binding site of 
pesticide molecules belonging to the pyrethroid and 
dichlorodiphenyltrichloroethane families, resulting 
in the decreased efficacy of these insecticides in 
managing mosquito populations. Resistance can also 
be linked to mutations in the Ace-1 gene, resulting in 
resistance to insecticides belonging to organophosphate 
and carbamate groups, such as malathion and 
temefos [76]. The detection of kdr mutations in the 
Vgsc and Ace-1 genes revealed the distribution and 
frequency of resistance alleles in various regions. Kdr 
mutations commonly found in Indonesia include the 
V1016G and F1534C mutations, which contribute to 
pyrethroid resistance [23, 24, 27, 32]. Mutations in 
Ace-1, such as the G119S mutation, confer resistance 
to organophosphates, have not been reported in 
Indonesia. This is likely due to the limited research on 
the Ace-1 gene mutation in Ae. aegypti mosquitoes 
in Indonesia [45, 46, 76]. These data indicate that 
resistance against the pyrethroid group that occurs in 
various mosquito populations in Indonesia has a strong 
genetic basis, which has implications for mosquito 
control in this region.

Understanding the occurrence and prevalence 
of kdr and Ace-1 mutations is critical for developing 
efficient vector control strategies. In instances where 
there is a significant amount of resistance caused by 
kdr mutations in some regions, it may be necessary 
to decrease the use of pyrethroids or to substitute 
them with an insecticide from a different category 
that is not influenced by the mutation. Research 
on Ace-1 mutations in Ae. aegypti associated with 
carbamate and organophosphate insecticide resistance 
is scarce worldwide. In the Namakkal region of India, 
Muthusamy discovered a mutation in the G119S codon 
of Ae. aegypti mosquitoes [77]. Although carbamates 

and organophosphates have been used for >20  years, 
Indonesia and Southeast Asia have not reported G119S 
codon mutations.

By combining genetic data on resistance with 
information on insecticide use and trends in dengue 
cases, vector control strategies can be adjusted to 
reduce the risk of more severe resistance and increase 
success in reducing dengue fever incidence in Indonesia.

CONCLUSION

Indonesia faces significant challenges in managing 
dengue fever due to the widespread resistance of 
Ae. aegypti mosquitoes to commonly used insecticides. 
Resistance to organophosphates, such as malathion 
and temefos, and pyrethroids, including cypermethrin, 
alpha-cypermethrin, and lambda-cyhalothrin, highlights 
the urgent need for more effective and sustainable 
vector control strategies. The detection of key genetic 
mutations, such as V1016G and F1534C in the Vgsc 
gene, underscores the genetic basis of resistance, while 
the absence of Ace-1 mutations indicates a potential 
area for further research in understanding resistance 
mechanisms.

The temporal and spatial trends observed in 
resistance patterns, coupled with environmental and 
demographic factors, reveal the complexity of vector 
management in Indonesia’s diverse landscape. While 
existing control methods such as fogging and larviciding 
remain important, their overuse has accelerated 
resistance development, reducing their effectiveness 
and necessitating a shift toward integrated vector 
management approaches.

Effective resistance management requires a 
multifaceted strategy that includes routine monitoring 
of resistance patterns and genetic mutations to inform 
insecticide selection, rotational or combination use 
of insecticides to minimize selection pressure, and 
community engagement to promote environmental 
management and reduce breeding sites. Strengthening 
collaborations between policymakers, researchers, 
and public health practitioners is crucial for designing 
region-specific, evidence-based interventions.

The findings of this study emphasize the need for 
continuous surveillance of resistance trends and the 
genetic evolution of mosquito populations. Addressing 
these challenges requires prioritizing research on 
novel control methods, such as biological and genetic 
approaches, alongside optimizing the current use of 
chemical insecticides. By implementing a holistic and 
adaptive vector control strategy, Indonesia can enhance 
its capacity to combat dengue fever, protect public 
health, and mitigate the socio-economic burden of this 
disease.
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