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A B S T R A C T

The emergence and global dissemination of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli represent 
a major public health concern. While antibiotic resistance in clinical and agricultural settings is well documented, the 
contribution of wildlife, particularly bats, to the spread of antimicrobial resistance (AMR) remains underexplored. Bats 
possess unique ecological traits – such as long-distance flight, longevity, and adaptability – that facilitate their role as 
potential reservoirs and vectors of antibiotic-resistant bacteria. This review synthesizes global findings on the occurrence, 
genetic characteristics, and transmission dynamics of ESBL-producing E. coli isolated from bats. Through a comprehensive 
literature review of studies conducted across five continents, we highlight the prevalence of multidrug-resistant E. coli 
in bat populations, with resistance profiles frequently including β-lactams (bla), aminoglycosides, tetracyclines, and 
fluoroquinolones. Notably, key ESBL genes such as blaCTX-M, blaTEM, blaSHV, and blaOXA have been identified in 
isolates from bat feces (guano), raising significant concern due to potential environmental contamination and zoonotic 
spillover. Risk factors such as habitat encroachment, anthropogenic waste exposure, and the agricultural use of bat guano 
further exacerbate the risk of ESBL transmission. Moreover, genomic comparisons suggest phylogenetic overlap between 
ESBL-producing E. coli from bats and those found in humans and livestock. Given these findings, bats warrant greater 
inclusion in One Health surveillance frameworks to trace AMR gene flow and develop targeted interventions. This review 
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INTRODUCTION

The irrational use of antibiotics in humans [1, 2], 
companion animals [3, 4], livestock [5, 6], and aquaculture 
[7, 8] has significantly contributed to the emergence 
and proliferation of antibiotic-resistant bacteria 
(ARB), representing a major public health concern 
with substantial economic implications [9, 10]. 
From a One Health perspective, public health and 
environmental health are intrinsically linked, with 
wildlife playing an integral role in this interface [11]. 
Although wildlife are not typically subjected to direct 
antibiotic treatment, they can acquire resistant bacteria 
through environmental exposure – such as ingestion 
of contaminated food or water, migration from natural 
habitats to anthropogenically altered environments, or 
direct contact with domestic animals and humans [12]. 
Anthropogenic activities have greatly contributed to 
environmental degradation, including the destruction 
and fragmentation of wildlife habitats [13]. Such 
activities, including deforestation, hunting, and land 
conversion for agriculture and urban development, have 
disrupted bat habitats and brought them into closer 
proximity with human populations [14–17]. These 
human-induced disturbances facilitate the transmission 
of ARB within wildlife populations and pose significant 
threats under the One Health paradigm [18].

Bats may serve as valuable bioindicators for 
assessing regional patterns in antimicrobial resistance 
(AMR) prevalence and distribution [19]. Due to 
their exceptional flight capabilities, long lifespan, 
and ecological adaptability, bats are key species 
for understanding the ecological dynamics of AMR 
transmission. Consequently, bats are important 
research subjects for evaluating regional antibiotic 
resistance levels and mitigating its environmental 
dissemination [20]. Wildlife can function both as 
reservoirs and vectors of resistant bacteria, facilitating 
the spread of resistance across habitats and even 
continents through long-distance movement [21]. 
Gastrointestinal microbiota, such as bacilli and lactic acid 
bacteria, in bats exhibit antioxidant and pro-mutagenic 
gene expression profiles that enable a unique antiviral 
immune response. This adaptive immunity allows bats 
to mount a slow yet efficient response to infection, 
enabling them to tolerate or eliminate pathogens 
[22]. Gerbáčová et al. [23], Obodoechi et al. [24], and 
Gaeta et al. [25] have confirmed that bats harbor both 
Gram-negative and Gram-positive bacteria that display 
resistance to multiple antibiotic classes.

The first investigation into antibiotic resistance 
in bat-associated bacteria was conducted by Graves 

et al. [26], who collected samples from bats in West 
Java and Krakatau Island, Indonesia. The study revealed 
that Gram-negative bacteria, notably Escherichia coli, 
Klebsiella, and Enterobacter, were the predominant 
isolates and exhibited resistance to antibiotics such 
as ampicillin, trimethoprim, sulphamethoxazole, and 
cephalothin. The detection of antibiotic resistance in 
these bats is attributed to contamination from human 
fecal matter. Members of the Enterobacteriaceae 
family are among the most resistant and are capable of 
producing extended-spectrum β-lactamases (ESBLs) – 
enzymes first identified in 1983 that hydrolyze third- and 
fourth-generation β-lactam (bla) antibiotics, including 
cefotaxime [27]. A substantial body of research has 
since focused on ESBL-producing bacteria in animals, 
with particular attention to E. coli and Klebsiella 
pneumoniae.

Despite increasing awareness of AMR as a 
critical One Health concern, the role of wildlife 
– particularly bats – in the dissemination of ESBL-
producing E. coli remains poorly understood. Current 
literature has extensively documented ESBL-associated 
E. coli in human and livestock populations; however, 
surveillance data on wildlife reservoirs are fragmented 
and geographically limited. While some studies have 
reported the presence of resistant E. coli in bats, 
few have comprehensively evaluated their global 
distribution, genetic characteristics, transmission 
dynamics, or ecological factors contributing to their 
persistence and spread. Furthermore, most existing 
research lacks comparative genomic analysis between 
bat-derived E. coli isolates and those found in humans or 
domesticated animals, which is essential for elucidating 
zoonotic potential. The underrepresentation of wildlife 
in AMR monitoring frameworks impedes our ability 
to trace resistance pathways and formulate effective 
mitigation strategies. Consequently, there is an urgent 
need to consolidate and synthesize the available 
evidence on the contribution of bats to the emergence 
and dissemination of ESBL-producing E. coli across 
ecological and geographical scales.

This review aims to synthesize current knowledge 
on the occurrence, distribution, resistance profiles, 
and public health implications of ESBL-producing 
E. coli isolated from bats globally. Specifically, it seeks 
to (i) evaluate the prevalence of ESBL-producing E. coli 
across different bat species and regions, (ii) describe the 
genetic determinants of resistance, including prevalent 
ESBL genes, (iii) explore ecological and anthropogenic 
factors influencing transmission dynamics, and 
(iv) assess the potential risks posed to humans, animals, 

underscores the need for integrated AMR monitoring in wildlife, enhanced waste management policies, and stricter 
biosecurity to mitigate the public health risks associated with wildlife-origin ESBL dissemination.

Keywords: antibiotic resistance, bats, Escherichia coli, extended-spectrum β-lactamase, guano, One Health, surveillance, 
zoonosis.
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and environmental health. By integrating global data 
and identifying research gaps, this review contributes to 
the development of a more comprehensive One Health 
surveillance framework and highlights the importance 
of including wildlife in AMR monitoring and control 
efforts.

ANTIBIOTIC RESISTANCE MECHANISMS

Microorganisms are considered resistant when they 
exhibit significantly reduced susceptibility compared 
to isolates that remain sensitive. Bacterial resistance 
can arise through spontaneous genetic mutations or 
through the horizontal acquisition of resistance genes 
from external genetic sources [28]. Acquired resistance 
typically results from the uptake of resistance genes, 
chromosomal DNA mutations, or a combination of both 
mechanisms [29]. ARB and antibiotic resistance genes 
may be transmitted through both vertical and horizontal 
gene transfer (HGT) processes, including conjugation, 
transduction, and transformation [30].

Vertical gene transfer refers to the hereditary 
transmission of genetic material from parent to progeny 
during bacterial replication [31]. In contrast, HGT involves 
the transfer of genetic material between different 
bacterial species and represents the predominant 
pathway for the dissemination of antibiotic resistance, 
particularly through plasmid-mediated conjugation. 
Plasmids harbor genes with a high likelihood of being 
mobilized through mobile genetic elements (MGEs) [32]. 
These plasmids frequently encode traits that confer 
survival advantages, such as resistance to antibiotics, 
heavy metals, and disinfectants, as well as genes related 
to metabolism and virulence.

Resistance genes support bacterial survival through 
three principal mechanisms: (i) The production of ESBLs; 
(ii) alteration of intracellular antibiotic concentrations 
through efflux systems such as the tetracyclines A (tetA) 
pump; and (iii) protection of antibiotic targets, including 
genes such as sul1 or qnr [33].

HGT MECHANISM

Plasmid conjugation in bacteria functions as 
a mechanism for HGT, whereby MGEs facilitate the 
transfer of genetic material from one bacterial cell 
to another. This process is mediated by the type IV 
secretion system, which enables the mobilization of 
DNA from donor to recipient cells. Notably, conjugative 
plasmids can transfer genetic material without the 
requirement for specific receptors on recipient cells [34]. 
These plasmids often confer adaptive advantages to 
their bacterial hosts, including tolerance to high 
concentrations of disinfectants and heavy metals, as well 
as novel metabolic capabilities [35]. HGT facilitates rapid 
genetic diversification, enabling bacterial populations 
to adapt to selective pressures such as antibiotic 
exposure. Moreover, HGT contributes to infectious 
disease outbreaks by promoting biofilm formation and 
the dissemination of virulence factors [36].

Transduction refers to the phage-mediated transfer 
of genetic material from one bacterium to another. 
Bacteriophages are ubiquitous in the environment and 
are characterized by their resilience under a range of 
conditions, including alkaline and acidic environments, 
elevated temperatures, and exposure to chlorination 
or ultraviolet irradiation. These durable properties 
allow phages to persist in diverse ecosystems, where 
they form complex mutualistic relationships with 
bacteria over extended evolutionary timescales [37]. 
Experimental study by Tao et al. [38] in murine models 
has demonstrated that transduction can generate 
genetically diverse E. coli strains and contribute to the 
emergence of AMR within the gut microbiota.

Transformation occurs when bacteria uptake 
extracellular DNA from their environment, typically 
originating from lysed cells. This process involves a 
temporary alteration in cell membrane permeability 
to facilitate the incorporation of foreign DNA, thereby 
enabling the acquisition of novel genetic traits [39]. 
Unlike conjugation and transduction, transformation 
does not require viable donor cells; rather, it relies on 
environmental DNA from dead organisms [40].

Resistance genes are categorized based on the 
class of antibiotics they counteract, including bla, 
aminoglycosides (aac), and tet, among others [41]. In 
Enterobacteriaceae, one of the most clinically significant 
mechanisms of resistance involves the enzymatic 
hydrolysis of bla antibiotics – such as penicillins, 
monobactams, and cephalosporins – by ESBLs [42]. 
The first report of an ESBL-producing bacterial strain 
was documented in 1983 [43]. The ESBL enzyme family 
includes several variants such as Temoneira (TEM), 
sulfhydryl variable (SHV), cefotaxime-hydrolyzing 
β-lactamase (CTX-M), inhibitor-resistant TEM, complex 
mutant TEM-1, originally identified in Klebsiella oxytoca 
(OXA), guiana extended-spectrum (GES), commonly 
found in Pseudomonas aeruginosa, pseudomonas 
extended resistant (PER), Belgium extended 
β-lactamase, vietnam extended-spectrum β-lactamase 
(VEB), Tlahuica, and Serratia fonticola [44]. According 
to the classification by Bush-Jacoby-Medeiros, ESBLs 
are grouped functionally into three major categories, 
whereas the Ambler molecular classification divides 
ESBLs into four structural classes: Class A (e.g., TEM, 
SHV, and CTX-M), Class B (e.g., ESBLM-C, ESBLM-D, and 
OXA), Class C (e.g., ESBLCABRA), and Class D (e.g., PER, 
VEB, GES, and IBC) [45].

EPIDEMIOLOGY OF E. COLI RESISTANCE IN BATS

E. coli is widely used as an indicator organism for 
monitoring antibiotic resistance due to its inherent 
ability to readily transfer resistance genes to other 
bacterial strains [46]. It is a common commensal 
bacterium inhabiting the gastrointestinal tracts of both 
animals and humans [47]. However, certain strains of 
E. coli possess virulence factors capable of causing a 
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range of clinical conditions, including gastroenteritis, 
pneumonia, septicemia, and cystitis [48]. The primary 
reservoir for the dissemination of E. coli is fecal matter. 
In bats, feces – commonly referred to as guano – serve 
as an environmental source of bacterial transmission. 
Bat guano is frequently employed in agriculture as an 
organic fertilizer due to its rich nutrient profile, which 
enhances soil fertility [49]. Nonetheless, its application 
as a biofertilizer raises public health concerns, as it 
may serve as a vector for foodborne pathogens and 
contribute to the contamination of livestock, water 
sources, and agricultural products [50].

Beyond its use in agriculture, guano from bats 
residing in urban parks, residential trees, and farmlands 
may facilitate bacterial dissemination as these animals 
forage at night or roost during the day in proximity 
to human activity [51]. The improper disposal and 
treatment of waste containing antibiotic residues, 
often termed “antibiotic pollution,” exacerbates the 
environmental burden of resistance [52]. There is a 
strong correlation between environmental antibiotic 
contamination and the emergence and persistence of 
resistant bacterial strains in polluted ecosystems [53]. 
The presence of antimicrobial-resistant bacteria in hosts 
– whether human, animal, or wildlife – can significantly 
reduce the effectiveness of available antibiotics and 
limit therapeutic options for bacterial infections in 
multiple species, including pets and livestock [54].

Aquatic and terrestrial ecosystems, particularly 
water and soil, play a critical role in the propagation of 
antibiotic resistance among wildlife [55]. Soil-dwelling 
invertebrates and microbial communities may harbor 
antibiotic residues or resistant bacteria, which can 
come into direct contact with or be ingested by foraging 
wildlife [56]. Human-driven activities contribute 
substantially to the interspecies transmission of 
AMR. Alarmingly, a considerable portion of the public 
remains unaware of their susceptibility to exposure 
or infection with resistant bacteria [57], let alone 
the potential for resistance transmission via wildlife 
reservoirs [58, 59]. Data on AMR in wildlife offer 
valuable insights for epidemiological assessments and 
are essential for informing future surveillance strategies 
aimed at understanding and mitigating resistance 
dissemination among wildlife populations [60].

Table 1 [23, 61–77] presents global data on 
antibiotic resistance profiles in E. coli isolated from bats, 
highlighting the diversity of resistance across different 
geographic regions.

Europe
A total of 42 E. coli isolates obtained from bats 

in Portugal exhibited resistance to ampicillin and 
streptomycin, with resistance rates of 57.14% and 
52.38%, respectively. In addition, the virulence gene 
fimA was detected in 21 of these isolates [61]. Another 
study by Garcês et al. [62] in Portugal reported that 
9.6% of ESBL-producing E. coli isolated from Tadarida 

teniotis bats demonstrated resistance to cefotaxime, 
tet, and ampicillin [62]. In Poland, E. coli strains isolated 
from bats captured in the Lublin Upland exhibited the 
highest resistance to kanamycin (84.2%), followed by 
sulfamethoxazole/trimethoprim and streptomycin [63]. 
Furthermore, isolates from bats sampled in a Portuguese 
natural park showed resistance to a broad spectrum of 
antibiotics, including ampicillin, piperacillin, tazobactam, 
cephalexin, cefuroxime, cefixime, cefotaxime, 
cefepime, nalidixic acid, ofloxacin, trimethoprim, and 
trimethoprim/sulfamethoxazole [64].

E. coli is known to produce approximately 80 
distinct lipoproteins involved in virulence, peptidoglycan 
synthesis and remodeling, cellular stress responses, 
and repair mechanisms. These lipoproteins contribute 
to the bacterium’s capacity to regulate antibiotic 
entry and maintain cellular stability [78]. Despite 
regulatory measures, the use of antibiotics such as 
ampicillin and tet remains prevalent in European animal 
production systems, particularly in swine farms, both 
for therapeutic and prophylactic purposes – practices 
that contravene current European regulations on 
antibiotic stewardship [79]. Ampicillin, a bla antibiotic, 
is inactivated by β-lactamases through hydrolysis of 
its β-lactam ring. Resistance to ampicillin is commonly 
associated with ESBL genes such as blaTEM, blaSHV, 
blaCTX-M, blaCMY, and blaOXA [80].

Interestingly, a study of 211 fruit-eating cave 
bats in Slovenia identified 185 E. coli isolates, all 
of which remained sensitive to ampicillin, tet, and 
chloramphenicol, but demonstrated resistance to 
ciprofloxacin and nalidixic acid [65].

America
A longitudinal study conducted in Peru between 

2015 and 2018 on Desmodus rotundus bats revealed a 
high prevalence of E. coli isolates resistant to multiple 
antibiotics, surpassing resistance levels observed in 
livestock from the same regions. All tested antibiotics 
– including third-generation cephalosporins such as 
aztreonam, cefotaxime, cephalexin, and cefepime– 
showed reduced efficacy [66]. Notably, the E. coli 
core genome multilocus sequence typing strain ST167 
identified in 2018 matched strains collected from 
the same bat species 2 years prior. In addition, ST648 
isolates identified from 2015 to 2017 displayed highly 
similar plasmid profiles across individuals sampled up 
to 100 km apart, suggesting long-term circulation and 
dissemination of colonizing clones among geographically 
separated bat populations [66].

In contrast, research conducted in Brazil yielded 
comparatively low resistance levels among E. coli, 
K. oxytoca, and Staphylococcus spp. isolates derived 
from bats residing in a national park. This was attributed 
to minimal anthropogenic influence in the protected 
area. Researchers recommended restricting tourist 
access to minimize human-induced environmental 
contamination [54]. However, Brazilian study by 
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Sens-Junior et al. [67] near urban areas found that 
E. coli isolates from Artibeus lituratus bats exhibited 
resistance to ampicillin (36.36%), amoxicillin (36.36%), 
and tet (27.27%) [67].

Wildlife is increasingly exposed to antimicrobial 
compounds and resistant bacteria through 
anthropogenic sources such as sewage discharge, 
improper waste disposal, contaminated water bodies, 
predation on infected organisms, and proximity to 
intensive livestock operations [81]. Animal-derived food 
products are considered significant contributors to the 
dissemination of AMR among human populations and 
the environment [82]. In the Americas, approximately 
65% of all antibiotics are sold for use in food-producing 
animals [83]. Resistant bacteria from this sector 
can spread through multiple pathways, including 
contaminated food products [84], occupational 
exposure [85], and environmental contamination [86], 
ultimately influencing the microbial ecology of wildlife 
habitats and increasing the risk of resistance transmission 
to and from wild animal populations.

Asia
In Indonesia, initial studies on the antibiotic 

resistance of E. coli date back to 1988; however, 
research specifically targeting E. coli isolated from 
bats was only conducted in 2024. Bat specimens were 
collected from caves located near human settlements. 
Out of 135 collected samples, 97 E. coli isolates 
displayed resistance to multiple antibiotics, including 
azithromycin (38.1%), amoxicillin (24.7%), tet (24.7%), 

sulfamethoxazole/trimethoprim (22.6%), ciprofloxacin 
(14.4%), and gentamicin (1%) [68]. Another study 
conducted by Mustika et al. [69] found that 37% of 
E. coli-positive samples from 150 bat guano specimens 
exhibited multidrug-resistance (MDR), particularly to 
third-generation cephalosporins such as ceftazidime.

The use of antibiotics in Indonesian poultry farms 
to enhance animal performance is common practice [87]. 
These antibiotics are frequently employed as growth 
promoters, contributing to environmental accumulation 
and increasing the risk of resistance emergence [88].

In Bangladesh, 104 E. coli isolates were recovered 
from 369 bat guano samples. Among these, 28.18% were 
resistant to cefepime (16%) and ampicillin (13%) [70]. 
A separate investigation on Rousettus leschenaulti 
fruit bats revealed that all E. coli isolates were fully 
resistant to amoxicillin and erythromycin [71]. Similar 
to Indonesia, the majority of Bangladeshi poultry 
farmers lack adequate knowledge of appropriate 
livestock management and rational antibiotic use [89]. 
Wastewater discharge from poultry farms represents 
a significant source of AMR dissemination in the 
environment, particularly due to insufficient waste 
management and limited sanitation infrastructure in 
both rural and urban regions [90, 91].

Africa
In Nigeria, all E. coli isolates obtained from 

bat fecal samples exhibited statistically significant 
resistance (p < 0.05) to amoxicillin, tet, and augmentin, 
with additional resistance observed against ceftriaxone, 

Table 1: Epidemiology of antibiotic resistance of Escherichia coli in bats.

Continent Country Antibiotic resistance profile Reference

Europe Portugal Ampicillin and streptomycin [61]
Portugal Cefotaxime, tet, and ampicillin [62]
Poland Kanamycin, sulfamethoxazole/trimethoprim, and streptomycin [63]
Portugal Ampicillin, piperacillin, tazobactam, cephalexin, cefuroxime, cefixime, cefotaxime, 

cefepime, nalidic acid, ofloxacin, trimethoprim, trimethoprim/sulfamethoxazole
[64]

Slovenia Ciprofloxacin and Nalidix [65]
America Peru Aztreonam, cefotaxime, cephalexin, and cefepime [66]

Brazil Ampicillin, amoxicillin, and tet [67]
Asia Indonesia Azitromycin, amoxicillin, tet, sulfamethoxazole/trimethroprim, ciprofloxacine, and 

gentamicin
[68]

Indonesia Ceftazidime [69]
Bangladesh Cefepime and ampicillin [70]
Bangladesh Amoxicillin and erythromycin [71]

Africa Nigeria Penicillin, tet, sulfamethoxazole/trimethoprim, and gentamicin [23]
Nigeria Amoxicillin, tet, augmentin, ceftriaxone, nitrofurantoin, gentamicin, cortimoxazole, 

ofloxacin, and pefloxacin
[72]

Nigeria Augmentin, cefuroxime, ceftazidime, amoxicillin, and cefotaxime [73]
Gabon Amoxicillin, ampicillin, amoxicillin/clavulanic acid, ticarcillin, ticarcillin/

clavulanic acid, piperacillin, cephalexin, cefoxitin, cefotaxime, cefpodoxime, 
ceftazidime, cefepime, aztreonam, ertapenem, amikacin, gentamycin, kanamycin, 
streptomycin, tobramycin, erythromycin, fosfomycin, tet, colistin, trimethropoietin/
sulfamethoxazole, nalidixic acid, ciprofloxacin, and levofloxacin

[74]

Nigeria Augmentin, cefuroxime, ceftazidime, amoxicillin, and cefotaxime [75]
Australia Australia Amoxicillin, tet, trimethoprim/sulfamethoxazole, aac, first- and third-generation 

cephalosporins
[76]

Australia (South Australia) Amoxicillin, amoxicillin-clavulanic acid, cephalosporin [77]

tet=Tetracycline, aac=Aminoglycosides
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nitrofurantoin, gentamicin, cotrimoxazole, ofloxacin, and 
pefloxacin. Notably, 90% of the isolates demonstrated 
MDR [72]. Resistance patterns in E. coli strains from 
bats and broiler chickens were found to be similar, likely 
due to inadequate sanitation practices on intensive 
poultry farms [92]. In 2021, Nigeria reported increased 
resistance in several antibiotic classes: penicillin 
(48.6%), tet (37.1%), sulfamethoxazole/trimethoprim 
(22.9%), and gentamicin (20.0%) [23]. A follow-up 
study by Aladejana et al. [73] in 2022 further confirmed 
a notable rise in E. coli resistance to augmentin, 
cefuroxime, ceftazidime, amoxicillin, and cefotaxime.

The spatial proximity between bats and humans or 
livestock significantly correlates with resistance profiles, 
particularly in regions where similar antibiotics are used 
in both veterinary and human medicine [93]. Supporting 
this, a 2017 study in the Republic of Congo reported no 
resistance among 39 E. coli isolates from 50 bat guano 
samples. The absence of resistance was attributed to 
abundant food resources in the bats’ natural habitat, 
which minimized their contact with human settlements 
and potential antibiotic exposure [94].

In Gabon, isolates of E. coli, K. pneumoniae, and 
Enterobacter cloacae from Epomops franqueti and 
Megaloglossus woermanni bats residing in the Makokou 
forest were resistant to a wide range of antibiotics, 
including amoxicillin, ampicillin, amoxicillin/clavulanic 
acid, ticarcillin, ticarcillin/clavulanic acid, piperacillin, 
cephalexin, cefoxitin, cefotaxime, cefpodoxime, 
ceftazidime, cefepime, aztreonam, ertapenem, 
amikacin, gentamicin, kanamycin, streptomycin, 
tobramycin, erythromycin, fosfomycin, tet, colistin, 
trimethoprim/sulfamethoxazole, nalidixic acid, 
ciprofloxacin, and levofloxacin [74]. Similarly, E. coli 
isolates from the feces of Eidolon helvum in Osun State, 
Nigeria, showed resistance to augmentin, cefuroxime, 
ceftazidime, amoxicillin, and cefotaxime [75].

Australia
In Australia, the prevalence of antibiotic-resistant 

E. coli in bats remains relatively low. Only 3.7% (12 out 
of 318) of the isolates exhibited resistance, though these 
were 100% resistant to amoxicillin, tet, trimethoprim/
sulfamethoxazole, aac, and both first- and third-
generation cephalosporins [76]. In addition, 53 E. coli 
isolates from Pteropus poliocephalus bats rescued in 
South Australia demonstrated resistance to amoxicillin 
(77.4%, n = 41), amoxicillin-clavulanic acid (24.5%, 
n = 13), and cephalosporins (11.3%, n = 6) [77]. The 
close proximity of agricultural and livestock zones in 
Australia increases the likelihood of AMR bacterial 
contamination, as evidenced by the overlapping 
resistance profiles observed in E. coli strains from both 
wildlife and domestic animals [95].

RISK FACTORS FOR ESBL-PRODUCING E. COLI

The incidence of antibiotic-resistant E. coli 
continues to rise annually, posing significant threats to 

both human and animal health. These resistant strains 
are increasingly detected in healthcare facilities and 
community settings [96]. E. coli is one of the primary 
pathogens implicated in urinary tract infections (UTIs), 
and approximately 70%–90% of clinical isolates in 
community settings have demonstrated resistance and 
the ability to produce ESBLs. The global dissemination 
of MDR ESBL-producing E. coli is of particular concern 
to the World Health Organization (WHO), given the 
difficulty in treatment and control [97].

Wildlife, including bats, functions as important 
reservoirs and vectors for these resistant bacteria due 
to their ecological overlap with human populations [98]. 
Treating infections caused by ESBL-producing bacteria 
becomes increasingly challenging due to the presence 
of resistance genes that render multiple antibiotic 
classes – such as trimethoprim, aac, cephalosporins, 
and macrolides – ineffective [99].

Bats exhibit biological traits that enhance their 
role in the environmental dissemination of ESBL-
producing bacteria. Their exceptional longevity 
relative to body size [100], robust immune tolerance 
to pathogens [101], and high mobility through long-
distance flight [102] contribute to their potential as 
widespread reservoirs. Bats are classified into two 
primary suborders: Megachiroptera (fruit-eating) and 
Microchiroptera (insectivorous) [103]. Urban expansion 
and habitat destruction have forced many bats to 
shift from forest ecosystems to urban and peri-urban 
environments. Insectivorous bats are commonly found 
near artificial lighting where insects congregate, while 
frugivorous bats often forage in cultivated or residential 
areas due to deforestation and declining wild fruit 
availability [104–106].

Human exposure to ESBL-producing E. coli from 
bats may occur through ingestion of contaminated 
fruits or water, direct contact with unprocessed guano, 
or recreational activities involving contaminated natural 
water sources [107, 108]. Populations residing in or 
near AMR hotspots are at greater risk of colonization 
or infection by ESBL-producing strains compared 
to individuals living in less impacted regions [109]. 
Phylogenetic analyses have revealed genetic similarities 
in ESBL determinants between wildlife and human-
associated E. coli, suggesting potential cross-species 
transmission [110].

Furthermore, identical resistance genes have been 
detected across geographically distant populations, 
implying long-range dissemination potentially driven by 
bat migration or human-mediated factors such as global 
travel. For instance, a study by Hayer et al. [111] in Chile 
documented overlapping AMR gene profiles, virulence 
genes, and plasmid replicons in livestock, wildlife, and 
domestic dogs within a 15 km radius. Bats residing 
in seemingly pristine forest environments can also 
harbor resistant bacteria due to complex transmission 
pathways, including environmental contamination from 



doi: 10.14202/vetworld.2025.1199-1213

1205

tourism and inadequate waste disposal practices [112]. 
Table 2 [23, 62, 63, 66, 69, 73, 76, 113, 114] shows the 
ESBL E. coli data from bat isolates from various regions.

Several ESBL genes found in bats – such as 
blaCTX-M, blaSHV, blaTEM, and blaOXA – are also 
frequently detected in humans and domestic animals. In 
Portugal, for example, blaCTX-M-1, blaSHV, blaTEM, and 
blaOXA have been identified in sheep [115], pigs [116], 
poultry [117], meat products [118], and human clinical 
isolates [119], as reported by Sabença et al. [64] and 
Garcês et al. [62]. Similar trends have been observed in 
Peru [120–122], where blaTEM is prevalent among both 
livestock and human populations [123–126]. In Nigeria, 
blaCTX-M and blaTEM have been detected across 
wildlife, livestock, and human samples, highlighting 
the widespread distribution of these resistance 
determinants [127–130]. In addition, in Australia, E. coli 
strains from bats have been shown to harbor various 
plasmid-mediated resistance genes, including aacA34, 
aadA1, aadA2, blaOXA-2, blaOXA-21, dfrA1, dfrA5, 
dfrA21, qacF, and qacH [93].

PUBLIC HEALTH IMPACT

E. coli is a commensal bacterium naturally 
present in the gastrointestinal tracts of both humans 
and animals [131]. ESBL genes found in bats exhibit 
considerable similarity to those commonly identified 
in E. coli strains isolated from humans and domestic 
animals. ESBL-producing E. coli has been documented 
across various ecological contexts, including human 
populations, livestock, wildlife, and along the food 
supply chain [132]. Resistance levels are reportedly 
higher in female and juvenile animals, a trend likely 
attributable to the prophylactic use of antibiotics during 
gestation, therapeutic applications during lactation, and 
routine administration as growth promoters in young 
animals [133].

The presence of ESBL-producing E. coli in humans 
significantly complicates the treatment of infections 
such as UTIs, pneumonia, bacteremia, and tuberculosis. 
In addition, the efficacy of medical interventions 
such as cancer chemotherapy, organ transplantation, 
intubation, and catheterization is compromised due 
to limited treatment options [134–138]. Consequently, 

mortality associated with ESBL-related infections 
continues to rise worldwide, with carbapenems often 
becoming the last line of defense in such cases.

Global prevalence data indicate that ESBL carriage 
rates are highest in Southeast Asia (46%, 95% CI: 
29%–63%), followed by Southern Europe (6%, 95% 
CI: 1%–12%), Northern Europe (4%, 95% CI: 2%–6%), 
Central Europe (3%, 95% CI: 1%–5%), South America 
(3%, 95% CI: 0%–7%), and North America (2%, 95% 
CI: 1%–5%) [139]. Environmental contamination – 
particularly of aquatic systems – through urine and feces 
from humans and animals carrying ESBL-producing 
strains further facilitates the widespread dissemination 
of these organisms [140]. As E. coli serves as a key 
indicator of fecal contamination, its detection plays a 
central role in food and water safety surveillance [141].

The economic burden of ESBL-producing E. coli 
is substantial, particularly when food contamination 
occurs, resulting in large-scale financial losses across 
agricultural and public health sectors [67]. Surveillance 
of ESBL in wildlife is especially critical, as these 
populations often move unpredictably across regions, 
making containment difficult. Monitoring efforts in 
free-ranging species are essential not only for mapping 
the geographic distribution of resistance genes but also 
for identifying potential reservoirs and transmission 
pathways relevant to human health [142].

From a clinical standpoint, patients infected with 
ESBL-producing bacteria tend to require prolonged 
hospital stays and intensive care, thereby incurring 
higher medical costs [23]. Recognizing the severity of the 
issue, the WHO has categorized antibiotic resistance as 
a pressing global health threat [143]. Current estimates 
attribute over 700,000 deaths annually to antibiotic-
resistant infections, with projections suggesting that 
this figure could escalate to 10 million deaths/year by 
2050 if current trends persist [144].

Regionally, the prevalence of ESBL-producing 
E. coli in Asia has risen sharply. Between 2002 and 
2011, resistance rates in China increased from 36.1% to 
68.1%. In India, the prevalence reached 79%, followed 
by Vietnam (34.4%), Thailand (50.8%), Singapore 
and South Korea (33.3%), Hong Kong (17.8%), Taiwan 
(12.7%), and the Philippines (17.0%) [145].

Table 2: ESBL-producing Escherichia coli from bats.

Continent Country ESBL resistance gene Reference

Europe Portugal blaCTX-M-1, blaCTX-M-3, blaSHV, blaTEM, blaOXA, blaCTX-M-9, blaCTX-M [62]
Poland blaCTX-M-3, blaCTX-M-5, blaTEM-1 [63]
Portugal blaCTX-M-1, blaCTX-M-32, blaCTX-M-14, blaSHV-12 [113]

America Peru blaCTX-M-55, blaCTX-M-15, blaCTX-M-65, blaCTX-M-3, and blaCTX-M-14 [66]
Asia Indonesia blaTEM [69]

blaTEM [114]
Africa Southeast Nigeria blaCTX-M-15, blaTEM [23]

Nigeria blaTEM [73]
Australia Australia blaNDM, blaCTX-M-27 [76]

ESBL=Extended-spectrum β-lactamase, bla=β-lactams, TEM=Temoneira, SHA=Sulfhydryl variable, CTX-M=Cefotaxime-hydrolyzing β-lactamase, 
OXA=Originally identified in Klebsiella oxytoca, NDM=New Delhi Metallo-β-lactamase
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ESBL CONTROL

Enhanced biosecurity practices in animal 
husbandry have proven to be effective strategies 
for mitigating the transmission of ESBL-producing 
E. coli between livestock and farm workers [146]. 
Strict adherence to hygiene protocols and minimizing 
exposure to known or potential carriers are essential 
measures for reducing the spread of ESBL-producing 
organisms in both clinical and community environments. 
Regular disinfection of hospital environments, including 
incubators, medical devices, and frequently contacted 
surfaces, plays a critical role in curbing nosocomial 
transmission [147].

In addition to local interventions, effective 
containment of AMR – including ESBL – relies on robust 
global surveillance systems. Programs such as the 
Global Antimicrobial Resistance and Use Surveillance 
System (GLASS) and the World Organisation for Animal 
Health (formerly Office International des Epizooties) 
provide coordinated platforms for tracking resistance 
trends. These efforts are further supported by regional 
initiatives including the European Antimicrobial 
Resistance Surveillance Network (EARS-Net), the 
Latin American Antimicrobial Resistance Surveillance 
Network (ReLAVRA), and the Central Asian and Eastern 
European Surveillance of Antimicrobial Resistance, 
which collectively strengthen international monitoring 
and response capacity [148].

In agricultural contexts, the composting of bat 
guano before use as fertilizer is recommended as a 
practical method to reduce microbial loads and limit the 
environmental dissemination of ARB [149].

Furthermore, novel therapeutic strategies are 
being developed to manage antibiotic resistance. These 
include combination therapies involving bla antibiotics 
with other antibiotic classes [150], the co-administration 
of β-lactamase inhibitors, and the synergistic use of 
antibiotics with biocides. Innovative approaches such 
as the use of phytochemicals, small-molecule inhibitors, 
and RNA interference are also being investigated as 
alternative or adjunctive treatments to combat resistant 
pathogens [151, 152]. These emerging solutions offer 
promising avenues to counter the growing threat of 
MDR bacteria.

CONCLUSION

The emergence of ESBL-producing E. coli as a 
critical public health concern underscores the need for 
an expanded One Health surveillance framework that 
includes wildlife reservoirs such as bats. This review 
synthesizes global evidence demonstrating that bats 
harbor ESBL-producing E. coli strains with genetic, 
phenotypic, and resistance profiles comparable to those 
found in humans, domestic animals, and environmental 
sources. The detection of key resistance genes – 
such as blaCTX-M, blaTEM, blaSHV, and blaOXA – in 

bat-associated isolates highlights the zoonotic potential 
and ecological interconnectedness of AMR transmission 
pathways.

Risk factors contributing to the spread of 
ESBL-producing E. coli from bats include habitat 
encroachment, environmental contamination from 
anthropogenic waste, agricultural misuse of antibiotics, 
and inadequate waste management in rural and peri-
urban areas. The high mobility, ecological plasticity, 
and longevity of bats amplify their role as long-range 
vectors, capable of disseminating resistant bacteria 
across ecosystems and geographical barriers.

The public health implications are profound. ESBL-
producing E. coli contributes to increased morbidity, 
mortality, and treatment costs, particularly in infections 
for which therapeutic options are severely limited. 
Surveillance data indicate rising ESBL prevalence across 
continents, with Asia and parts of Europe showing the 
highest burden. Moreover, the economic consequences 
extend beyond healthcare to food safety and trade, 
especially where contaminated guano is used as 
fertilizer.

Effective mitigation requires a multifaceted 
approach involving enhanced biosecurity in livestock 
systems, improved sanitation, wildlife monitoring, and 
global coordination through surveillance networks 
such as GLASS, EARS-Net, and ReLAVRA. Innovative 
treatment modalities, including enzyme inhibitors, 
phytochemicals, and RNA interference, offer promising 
avenues for addressing therapeutic challenges.

Bats represent a significant but often overlooked 
reservoir of ESBL-producing E. coli. Incorporating 
wildlife into AMR surveillance and response strategies 
is essential to curbing the global spread of resistance 
genes. Future research should focus on genomic 
comparisons, transmission modeling, and ecological risk 
assessments to inform evidence-based interventions at 
the human–animal–environment interface.
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