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A B S T R A C T

Background and Aim: Early postpartum behavioral patterns are pivotal indicators of dairy cow health, reproductive 
success, and lactation performance, particularly under the environmental stressors of tropical climates. This study aimed to 
investigate how these behavioral patterns, as captured by smart biosensor data, influence reproductive outcomes, and milk 
yield in Holstein Friesian cows, with specific emphasis on parity differences and behavioral clustering.

Materials and Methods: A total of 227 Holstein Friesian cows, categorized by parity (primiparous vs. multiparous), were 
monitored using AfiTag-II accelerometers from 3 days prepartum to 30 days postpartum. Behavioral variables – activity, rest 
time, rest per bout, and restlessness ratio – were subjected to K-means clustering to identify distinct behavioral profiles. 
Reproductive performance was analyzed using Cox proportional hazard models, while lactation dynamics were modeled 
using the Wood function to estimate peak yield, peak time, and persistency.

Results: Three distinct behavioral clusters were identified. Primiparous cows in Cluster 1 showed the highest early 
postpartum activity (~300 min/day at 5 days in milk [DIM]) and restlessness ratios, while multiparous cows exhibited more 
stable behavioral profiles. Cox regression suggested that cows in Cluster 0 had a higher, although non-significant, likelihood 
of estrus onset at 40 DIM (Hazard ratio = 1.44, p = 0.09). Lactation modeling revealed that multiparous cows in Cluster 0 
attained the highest cumulative milk yield (4896.6 ± 252.1 kg at 305 DIM), while the single cow in Cluster 2 exhibited an 
atypical lactation curve with a delayed peak and reduced persistency.

Conclusion: Postpartum behavioral clustering reveals parity-specific lactation and reproductive trajectories in tropical dairy 
cows. Higher activity and restlessness ratios may delay estrus and compromise milk yield, underscoring the potential of 
behavioral monitoring for targeted reproductive and nutritional management. Integration of sensor-based clustering with 
routine herd monitoring may support early identification of cows at risk of suboptimal performance, improving reproductive 
efficiency and milk production in tropical dairy systems.

Keywords: K-means clustering, milk yield, parity, postpartum behavior, reproductive performance, smart sensors, tropical 
dairy cattle.
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INTRODUCTION

Postpartum behavioral patterns are vital indicators 
of dairy cow welfare and exert a direct influence 
on reproductive efficiency and milk production 
outcomes [1, 2]. Traditional methods for classifying 

cow behavior rely on manual observation and 
predefined criteria [3, 4]; however, these approaches 
are labor-intensive, time-consuming, and prone to 
observer bias [5]. Recent advancements in automated, 
sensor-based technologies – such as the AfiTag-II 
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biosensor – now provide robust tools for continuous 
monitoring of activity and resting behavior in dairy 
cows. These devices facilitate precise, high-frequency 
data acquisition, enabling a reliable assessment of the 
associations between postpartum behavioral changes 
and reproductive and productive performance [2, 6]. In 
addition to minimizing labor demands, these automated 
systems enhance herd management efficiency and 
contribute to improved economic outcomes on dairy 
farms [7, 8].

Behavioral patterns in dairy cows differ markedly 
between tropical and temperate climates, largely 
due to environmental stressors such as high ambient 
temperatures and humidity [9, 10]. In tropical regions, 
these stressors often result in irregular resting behavior 
and delayed reproductive cycles, in contrast to the 
more predictable patterns observed in temperate 
zones [11]. Effectively addressing these climate-induced 
differences necessitates management strategies 
tailored to local environmental conditions, thereby 
optimizing fertility and milk production in tropical 
herds [12]. Given the critical economic importance of 
reproductive success, early postpartum estrus detection 
and efficient insemination are essential for maintaining 
productivity in dairy operations [13]. However, heat 
stress in tropical climates frequently alters postural 
and activity-related behaviors, which may negatively 
affect key indicators of reproductive performance and 
productivity.

The lactation curve (LC) serves as a valuable 
analytical tool for understanding milk production 
dynamics, particularly in tropical environments where 
atypical LC patterns are more frequently observed due 
to environmental stressors [14–16]. Metrics such as 
peak time, peak yield, and persistency are instrumental 
in evaluating production potential and overall health, 
with these parameters influenced by factors including 
parity, genetic background, and environmental 
conditions [17, 18]. In tropical climates, approximately 
20%–30% of dairy cows may exhibit atypical LC shapes – 
such as delayed peak production or reduced persistency 
– stemming from elevated metabolic stress during early
lactation [14, 19, 20]. Insight into these variations is 
essential for designing management practices that 
support both productivity and animal welfare in tropical 
dairy systems.

Clustering analysis has emerged as a valuable 
technique for classifying cows based on behavioral 
and physiological profiles. In particular, the K-means 
clustering algorithm is well-suited for analyzing large 
datasets and identifying distinct behavioral patterns, 
especially under the variable conditions’ characteristic 
of tropical environments [15, 21]. While previous 
research by Rebuli et al. [22], Grelet et al. [23], and 
Pereira et al. [24] have applied K-means clustering to 
classify cows based on milk yield, genetic traits, and 
blood parameters, relatively few studies have employed 

this method to forecast reproductive performance and 
LC characteristics in tropical dairy populations.

In this study, we employed K-means clustering to 
categorize activity-related behavioral patterns during 
the early lactation period in tropical dairy cows, with 
specific attention to parity-based differences. By 
integrating behavioral clustering with LC modeling 
using the Wood function [17], our objective was to 
predict reproductive and lactation outcomes associated 
with specific behavioral profiles. This approach aims 
to inform the development of targeted management 
strategies for tropical dairy production systems.

Despite growing interest in the application of 
sensor-based monitoring systems for dairy cow behavior, 
limited research has investigated the integration of 
early postpartum behavioral data with reproductive 
and lactation outcomes under tropical environmental 
conditions. Most existing studies have focused on 
temperate climates, where environmental stressors 
differ significantly from those encountered in tropical 
regions. Moreover, while K-means clustering has been 
employed to classify cows based on milk yield, genetic 
traits, or metabolic profiles, its application to behavior-
based classification during the critical transition period 
remains underexplored in tropical dairy systems. 
Notably, the predictive relationship between cluster-
defined behavioral profiles and reproductive milestones 
such as estrus onset, as well as lactation dynamics 
modeled through established functions like the Wood 
model [17], has not been sufficiently characterized. This 
represents a key research gap with practical implications 
for optimizing herd fertility and milk production 
strategies in heat-stressed environments.

Accordingly, the present study aimed to evaluate 
the effects of early postpartum behavioral patterns on 
reproductive performance and milk yield in tropical 
Holstein Friesian cows, using K-means clustering to 
identify distinct behavior profiles. These behavioral 
clusters were subsequently analyzed in relation to 
reproductive traits using Cox regression and lactation 
dynamics through the Wood function model [17]. 
The study also examined parity-specific differences 
in behavioral and production responses, thereby 
contributing to a data-driven framework for precision 
dairy management in tropical climates.

MATERIALS AND METHODS

Ethical approval and informed consent
This study utilized data directly retrieved from the 

database of a commercial dairy farm, focusing on early 
postpartum activity patterns, reproductive outcomes, 
and milk production performance. As a retrospective 
study based on secondary data analysis, with no 
direct or indirect interaction with animals, formal 
approval from the Institutional Animal Care and Use 
Committee was not required. Nonetheless, the study 
was conducted in accordance with ethical research 



doi: 10.14202/vetworld.2025.1109-1126

1111

standards, including data protection and confidentiality. 
Before data collection, written informed consent was 
obtained from the farm owner, who was thoroughly 
informed about the study’s objectives, the intended use 
of the data, and the measures implemented to ensure 
confidentiality and anonymity. All procedures adhered 
to relevant ethical guidelines, maintaining the privacy 
and protection of both the owner and the data involved.

Study period and location
Data on calving events that occurred between  

July 2020 and May 2022 were collected from 227 
Holstein Friesian dairy cows housed at Sithichoke Dairy 
Farm, located in Nakhon Ratchasima Province, Thailand. 

Animals, housing, diet, management, and health
The sample consisted of 173 first-lactation cows 

and 53 cows in their second or higher lactation. These 
cows exhibited an average lactation length of 152.50 ± 
8.33 days and a gestation period of 279.47 ± 20.11 days 
(mean ± standard deviation). Inclusion criteria required 
complete activity and milking records from 3 days 
prepartum to 30 days postpartum for behavioral 
analysis, and from 0 to 305 days in milk (DIM) for 
milk yield data. Cows with missing identification data, 
incomplete lactation records, or faulty sensor readings 
were excluded to maintain dataset integrity.

The cows were housed in a free-stall barn aligned 
southwest to northeast, incorporating designated feed 
storage, resting, feeding, and delivery areas. A partially 
slatted central resting area was extended along its full 
length. The milking parlor was located on the southwest 
side of the farm, adjacent to the office and milk storage 
facility. Natural light was supplemented by artificial 
lighting managed by farm staff to support feeding and 
behavioral monitoring.

Thailand’s climate is marked by high ambient 
temperatures and humidity, with average values of 
27°C and 74%, respectively [25]. Seasonal variation was 
observed: 20°C–26°C in winter (November–February), 
32°C–37°C in summer (March–June), and 26°C–30°C 
during the rainy season (July–October). Relative 
humidity ranged from 65% to 70% in winter, 75% to 80% 
in summer, and often exceeded 80% in the rainy season 
[25–27]. To mitigate heat stress, cooling strategies such 
as shaded resting areas, sprinklers, and ventilation fans 
were implemented [10].

Milking occurred twice daily, from 05:30 to 
06:00 and from 16:30 to 17:00. Cows were grouped 
by production level and fed a total mixed ration twice 
daily (06:00–06:30 and 17:00–17:30), formulated to 
meet their nutritional needs. Daily feed intake was 
monitored by weighing the feed provided. The chemical 
composition of the ration is presented in Table 1. Clean 
water was available ad libitum, and all animals were 
under the supervision of zootechnical and veterinary 
staff throughout the study.

A secondary dataset containing the same 227 
animals was used to assess behavioral variables 

– activity, rest time, rest per bout, and restlessness ratio 
– collected from −3 to 30 DIM. A 7-day rolling average 
was applied to smooth these variables for analysis.

Farm staff conducted daily health assessments 
to monitor for signs of illness, injury, or behavioral 
abnormalities. Routine veterinary inspections were 
performed twice daily following feeding. Preventive 
health measures, including vaccinations and parasite 
control programs, were in place to ensure herd health. 
All health records were systematically maintained in the 
farm’s database for reference and analysis.

Transition cows were managed according to 
standard farm protocols, which included relocation to 
calving pens based on prior insemination and health 
history. The calving barn, equipped with rubber 
mattresses, was located adjacent to the lactating cow 
barn and within visual proximity. Bedding was cleaned 
and replaced after each calving. Additional information 
on calving protocols is available in our previous study by 
Raza et al. [10].

Data preparation
Sensor-based data preprocessing

The AfiTag-II biosensor (Afikim Ltd., Kibbutz, Israel) 
is a proprietary tri-axial accelerometer encased in a 
durable housing, designed to capture X-, Y-, and Z-axis 
movement data. The sensor was securely fastened to the 
right hind leg of each cow, approximately 20 cm above 
the hoof, using adjustable straps to ensure comfort and 
freedom of movement. The device converts mechanical 
acceleration – such as movement and gravitational 
force – into waveform signals [10, 28], enabling the 
detection and classification of both static and dynamic 
activities [29]. Behavioral metrics recorded included 
activity, rest time, rest per bout, and restlessness ratio, 
as summarized in Table 2.

Sensors were installed approximately 1 month 
before calving and remained in place throughout 

Table 1: Description of chemical composition of feed 
ingredients used in this study.

Chemicals TMR 1 TMR 2 TMR 3 TMR 4

Proximate analysis on a dry matter
Dry matter (%) 26.92 37.62 32.62 36.66
Crude protein (%) 10.53 13.82 14.28 16.66
Crude fat content (%) 1.70 1.39 1.40 2.03
Crude fiber (%) 20.89 20.93 24.00 27.45
NFE (Mcal/kg) 52.44 35.19 33.05 27.72

Detergent analysis on a dry matter basis (%)
Ash 14.44 28.67 27.27 26.14
ADF 43.00 26.26 28.75 25.03
NDF 67.21 36.55 43.77 39.26
ADL 4.32 2.94 3.42 3.29
Cellulose 38.68 23.32 25.33 21.74
Hemicellulose 24.21 10.29 15.02 14.23

NFE=Energy content (Mcal/kg), ADF=Acid detergent fiber, NDF=Neutral 
detergent fiber, ADL=Acid detergent lignin, TMR=Total mixed ration. 
TMR 1=Dry cow group, TMR 2=Low milk production group: <10 kg/day, 
TMR 3=Medium milk production group: ≥10–25 kg/day, TMR 4=High 
milk production group: >25 kg/day.
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the study. All devices were synchronized with the 
farm’s milking software to link behavioral data with 
individual animal identification. Cows were provided 
a 1-week adaptation period. Previous studies by Raza 
et al. [10], Papageorgiou et al. [30], and Henriksen 
and Munksgaard [31] have validated the accuracy of 
the AfiTag-II system in detecting behavioral patterns. 
Calibration procedures accounted for leg angle, weight 
distribution, and movement variability to ensure reliable 
measurements. Any sensor exhibiting malfunction was 
recalibrated or replaced before final data collection.

To ensure data quality, the research team 
implemented strict protocols to address potential 
sources of measurement bias. Factors such as gait 
pattern variation, body condition score, and leg strap 
tightness were monitored. Sensors were attached 
by trained personnel from the device manufacturer, 
following a standardized protocol for placement. Farm 
staff also periodically inspected sensor positioning to 
ensure uniform application across all animals.

Behavioral data were analyzed using inbuilt 
algorithms and recorded in units of minutes per day. 
Data were transmitted wirelessly to a base station and 
subsequently downloaded to Microsoft Excel 2021 [32]. 
The activity dataset (n = 227) contained no missing 
values. Minor gaps (~2%) in the milk yield dataset 
were addressed using the Wood lactation model and 
linear interpolation. Outliers were identified using 
the interquartile range (IQR) method in the Statistical 
Package for the Social Sciences (SPSS) version 29.0.1 (IBM 
Corp., NY, USA). To reduce skewness, data normalization 
was performed using Z-score and log transformation in 
Python (version 3.12.2, Python Software Foundation, 
https://www.python.org). The complete preprocessing 
workflow and scripts are publicly available through 
GitHub: https://github.com/AqeelRaza51214.

Clustering
Clustering is a foundational data mining and 

machine learning approach used to group similar data 
points into distinct, non-overlapping clusters [33]. A core 
component of clustering is the quantification of similarity 
or distance between data points [34]. The Euclidean 

distance is commonly applied to measure the straight-
line distance in multidimensional datasets [35]. Within 
clustering applications, this metric helps determine the 
proximity of individual data points to their respective 
cluster centroids [36]. The mathematical representation 
of the Euclidean distance “d” is given as follows:

μ∑ m 2
i kd= ( (j=1) (x j- j) )

Where:
a) xij indicates the value j-th recorded feature for cow, 

i.
b) μkj is the value of the centroid for j-th recorded 

features in cluster k.
c) m is the number of recorded features that were 

used in the analysis.

To evaluate the effectiveness of the clustering 
outcome, it is necessary to assess both cluster cohesion 
and separation. This study employed the Within-Cluster 
Sum of Squares (WCSS) method to quantify total 
variance within each cluster based on selected features. 
WCSS was computed by summing the squared Euclidean 
distances between individual data points and the 
centroid of their respective clusters. The corresponding 
mathematical equation is shown below.

μ∑ ∑K 2
i k i kWCSS(K)= (k=1) (x C־ )Px - P

Where:
a) xi denotes the recorded features cow i.
b) ck stands for the number of cows assigned to cluster 

k.
c) μk is the centroid of cluster k, representing the 

mean values of recorded features variables for that 
cluster.

d) ║xi=μk║
2 is squared Euclidean distance between 

the recoded features vector xi of cow i and the 
cluster centroid μk.

e) The outer summation: ∑
k
k=1 iterate over each k 

cluster.
f) The inner summation: ∈∑

i kx c shows the sum of 
square distances for all cows assigned to cluster k.

K-means clustering, an unsupervised machine 
learning algorithm, was utilized due to its efficiency 
with both simple and high-dimensional datasets. 
However, K-means is known to be sensitive to outliers, 
as extreme values can distort the cluster centroids 
and overall data distribution [14, 34]. To enhance 
clustering validity and determine the optimal number 
of clusters, three complementary methods were 
applied: the elbow method, the silhouette score index, 
and WCSS. The elbow method is a visual tool that plots 
the WCSS against varying cluster counts to identify the 
point where additional clusters provide diminishing 
improvements in cohesion [14, 37]. The silhouette 
score quantifies cluster separation by comparing the 

Table 2: Definition of postural behavioral metrics.

Parameters Definition 

Activity Total duration of physical movement of 
the animal per day.

Rest time The total duration of resting period 
throughout the day.

Rest periods 
per Bout

Average resting period of individual cow 
rest.

Restlessness 
ratio

A metric designed to quantify a cow’s 
relative activity by comparing its current 
activity level to its individual baseline.

Activity and rest time were measured in minutes per day; rest per bout 
was measured in minutes per bout per day. The restlessness ratio was 
calculated as the ratio of the current day’s activity time (in minutes) to 
the average activity time of the previous 7 days.
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mean intra-cluster similarity with the nearest-cluster 
similarity [38]. Based on these techniques, three 
clusters were identified as optimal for the present 
dataset (Supplementary Figures 1 and 2). Extensive data 
preprocessing was performed to minimize the influence 
of outliers, including the IQR method for outlier 
detection, and Z-score and log transformation for data 
normalization and skewness reduction.

Characterization and comparison of clusters
To determine distinct behavioral clusters within 

the second dataset, K-means clustering was applied 
using the following postural behavior variables: 
activity, rest time, rest per bout, restlessness ratio, 
parity (Lactation No. 1 vs. Lactation No. ≥2), DIM 
(−3 to 30 days), and their corresponding 7-day rolling 
averages (rolling activity, rolling rest time, rolling rest 
per bout, and rolling restlessness ratio). The resulting 

cluster classifications were merged with the milk yield 
dataset to enable a comprehensive comparison of 
lactation characteristics by parity group. Specifically, 
comparisons were made between primiparous and 
multiparous cows for peak milk yield, peak time (DIM of 
peak yield), and cumulative milk yield at 56, 84, 126, and 
305 DIM. The LCs for each cluster were modeled using 
the Wood function [17], incorporating cluster, parity, 
and milk yield data to explore associations between 
postural behavior and lactation performance.

Milk dataset
The milk dataset was obtained from a commercial 

dairy farm equipped with the AfiMilk automatic milking 
system (Afikim Ltd.), operational between December 
2019 and July 2023. Milk yield data were recorded for 
individual cows using radio-frequency identification 
tags integrated into the system. The dataset included 

Supplementary Figure 2: Silhouette score for detection of clusters numbers.

Supplementary Figure 1: Elbow method for identification of clusters numbers.
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227 lactation records, each representing a unique cow. 
Records comprised milking date, cow ID, parity (first 
lactation or second and above), DIM (0–305 DIM), and 
daily milk yield in kilograms.

Missing values in the milk yield data were imputed 
using the Wood lactation model [17], as peak yield and 
persistency are essential for LC analysis. The model, 
based on a gamma function, assumes a biologically 
plausible lactation trajectory: An initial increase in 
milk production post-calving, followed by a peak and 
gradual decline. While the model does not account 
for external variables such as disease, feed variation, 
seasonality, or heat stress, it remains a preferred choice 
due to its simplicity, robustness in trend analysis, and 
suitability for imputing missing data. Each cow’s LC 
was fitted using the Wood model, and the resulting 
parameters were used to estimate missing daily yield 
values. Peak yield and other milk production traits were 
also calculated using this model. The Wood model is 
expressed mathematically as follows:

y = atb e-ct

Where:
a) “y” represents the daily milk yield.
b) “t” is the time since parturition.
c) “a” denotes the overall milk production levels.
d) “b” signifies the ascending phase of lactation that 

leads to the peak yield.
e) “c” demonstrates the descending phase of milk 

yield after parturition.

To validate the model, two metrics were used: 
The coefficient of determination (R2) and mean 
absolute error (MAE). R2 quantifies how well the 
model explains the variance in milk yield, while MAE 
reflects the average magnitude of prediction error. 
Tables 3–5 [17, 39] summarize lactation performance 
values and the respective validation metrics, highlighting 
model performance in relation to parity.

Programming packages
Data cleaning, preprocessing, and imputation using 

the Wood model [17] were conducted using Python 
(version 3.12.2; https://www.python.org/). Key libraries 
included NumPy (version 1.24.4, NumPy Developers, 
https://numpy.org) [40, 41], and Pandas (version 2.2.3, 
pandas development teams, https://pandas.pydata.org) 
with the Wood model implementation executed through 
the SciPy package (version 1.14.1, https://scipy.org) [42]. 
All analyses were performed in Jupyter Notebook (https://
jupyter.org). LC visualization was completed using 
Matplotlib and Seaborn libraries [43]. For reproducibility, 
the Python scripts, cleaned datasets, and additional 
clustering and LC analysis files are available at the GitHub 
repository: https://github.com/AqeelRaza51214.

Statistical analysis
Descriptive statistics were generated using SPSS 

version 29.0.1 (IBM Corp., NY, USA). Outliers were Ta
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removed using the IQR method. An exploratory analysis 
was performed to investigate potential predictors of 
reproductive milestones: calving to first heat, calving to 
first service, and calving to conception.

To assess reproductive performance, univariable 
Cox proportional hazards regression was conducted 
to calculate hazard ratios (HRs) for achieving first heat 
at 40, 60, and 90 DIM; first service at 60, 90, and 120 
DIM; and pregnancy at 100, 150, and 200 DIM. Cluster 
1 was designated as the reference group. Cows that 
achieved reproductive outcomes before the respective 
DIM thresholds were censored from the analysis. 
Adjusted HRs were reported alongside 95% confidence 
intervals (CI) and corresponding p-values. p ≤ 0.05 was 
considered statistically significant.

Lactation performance was evaluated by 
comparing peak milk yield, peak time, persistency, and 
cumulative milk yields at 56, 84, 126, and 305 DIM 
across clusters, within each parity group (primiparous 
and multiparous). Normality was assessed using 
the Shapiro–Wilk test and Q-Q plots. For normally 
distributed variables, a one-way analysis of variance 
(ANOVA) was used, followed by Tukey’s honestly 
significant difference test for post hoc comparisons. 
Non-normal variables were analyzed using the Kruskal–
Wallis test, with pairwise comparisons conducted using 
Dunn-Bonferroni correction.

Effect sizes were reported to enhance 
interpretability: Partial eta squared (η2) for ANOVA 
and epsilon squared (ε2) for the Kruskal–Wallis test. All 
statistical analyses were stratified by parity to account 
for physiological differences. The significance level was 
set at p < 0.05 for all comparisons.

RESULTS

Temporal dynamics of postural behavior across parity 
and clusters

Figures 1–4 present a detailed evaluation of 
postural behaviors and resting patterns, illustrating 
rolling activity, rolling rest time, rest duration per bout, 
and restlessness ratio among dairy cows, stratified by 
parity and behavioral clusters.

Rolling activity patterns from −3 to 30 DIM 
revealed distinct behavioral differences among Ta
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Table 5: Validation of Wood lactation curve model for the 
parity and cluster groups (n = 227).

Parity Cluster R2 MAE

Primiparous 0 0.83 1.35
1 0.69 1.05
2 0.83 1.27

Multiparous (≥2) 0 0.80 1.48
1 0.82 1.43

R² (coefficient of determination) measures the proportion of the 
observed milk yield variance explained by the model, indicating the 
overall fit. MAE (mean absolute error) represents the average absolute 
difference between predicted and observed values, reflecting typical 
prediction error.
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primiparous cows across clusters (Figure 1a). Cluster 1 
cows exhibited the highest early postpartum activity, 
peaking at approximately 300 min/day shortly after 
calving, followed by a progressive decline. In contrast, 
cows in Cluster 0 maintained a more stable activity 
pattern, averaging 225 min/day. The single primiparous 
cow in Cluster 2 showed reduced and inconsistent 
activity levels.

A similar trend was observed in multiparous cows 
(Figure 1b). Cluster 1 cows showed elevated activity 
early postpartum, peaking at around 350 min/day near 
5 DIM. However, activity levels declined thereafter. 
Cows in Cluster 0 maintained relatively steady activity, 
averaging approximately 200 min/day.

Resting time patterns, depicted in Figures 
2a and b, indicated that primiparous cows in 
Clusters 0 and 1 exhibited reduced resting time leading 
up to calving (Figure 2a), with a nadir around 5 DIM. 
Post-calving, Cluster 0 cows maintained a higher 
average rolling rest time (~600 min/day) compared to 
Cluster 1 cows (~550 min/day). In contrast, the cow in 
Cluster 2 exhibited an atypical increase in resting time 
post-calving, reaching a peak of 1200 min/day.

For multiparous cows (Figure 2b), both Clusters 
0 and 1 displayed declining rest time approaching 

calving. Postpartum, Cluster 0 cows stabilized around 
650 min/day, whereas Cluster 1 cows initially declined 
to 400 min/day and gradually recovered to ~500 min/
day by 30 DIM.

Figure 3a illustrates rest per bout durations in 
primiparous cows. Clusters 0 and 1 maintained relatively 
stable durations (~90 min/bout/day). The cow in Cluster 2 
deviated significantly, with rest per bout increasing sharply 
post-calving to over 700 min/bout/day.

For multiparous cows (Figure 3b), both clusters 
demonstrated a decline in rest per bout duration 
approaching calving – Cluster 0 averaging ~65 min and 
Cluster 1 slightly lower at ~60 min. Post-calving, both 
groups gradually recovered, though durations remained 
below prepartum levels. Cluster 0 cows displayed more 
stable rest patterns overall.

Figures 4a and b show the restlessness ratio, a 
behavioral indicator of agitation. Primiparous cows 
in Cluster 1 showed the highest restlessness, peaking 
at ~18 on the day of calving, then declining to ~10 by 
15 DIM. Cluster 0 cows peaked at ~6 and stabilized at 
4–5, while the single cow in Cluster 2 maintained a 
consistently low ratio of ~2–3.

Among multiparous cows (Figure 4b), Cluster 1 
again exhibited the highest restlessness ratio, peaking 

Figure 1: The figure illustrates (a) rolling activity (minutes/day) of primiparous cows (n = 173) across three cluster groups 
(0, 1, and 2) and (b) rolling activity (minutes/day) of multiparous cows (n = 53) across two cluster groups (0, and 1), with 95% 
confidence interval during the −3 to 30 days postpartum.

b

a
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above 20 on calving day and declining to ~8 by 15 
DIM. Cluster 0 cows showed a moderate peak (~6) and 
stabilized around 4–5 thereafter.

Reproductive performance
The reproductive performance of 226 Holstein 

Friesian cows was evaluated under tropical conditions, 
with 76.2% (n = 173) in their first lactation and 23.4% 
(n = 53) in their second or subsequent lactation (≥2). 
Cows were categorized into two primary behavioral 
clusters: Cluster 0 (n = 66, 29.2%) and Cluster 1 (n = 160, 
70.7%). A single cow in Cluster 2 was excluded from 
regression analysis due to its singular representation.

Univariable Cox regression analysis designated 
Cluster 1 as the reference category (Table 6). The 
analysis indicated a delayed return to estrus in Cluster 
1. At 40 DIM, cows in Cluster 0 were 44% more likely to 
show estrus than those in Cluster 1 (HR = 1.44, p = 0.09). 
This likelihood decreased to 32% at 60 DIM (HR = 1.32, 
p = 0.10) and to 22% at 90 DIM (HR = 1.22, p = 0.19).

Although not statistically significant, these 
findings suggest a biological association between early 
postpartum behavior and estrus onset. The elevated 
HRs in Cluster 0 point to accelerated estrus resumption, 
supporting the utility of behavioral monitoring in 
optimizing estrus detection and insemination timing.

No significant differences in other reproductive 
metrics were observed between clusters. However, 

Cluster 0 cows achieved first service slightly earlier, 
with a 4% higher likelihood at 60 DIM (HR = 1.04, 
p = 0.85). Similarly, conception rates at 100, 150, and 
200 DIM were marginally higher in Cluster 0, though not 
statistically significant.

These trends underscore the potential influence 
of early behavioral patterns on reproductive outcomes. 
Further studies involving larger, multidimensional 
datasets and varying management systems are 
warranted to refine sensor-based estrus detection 
strategies.

Milk production dynamics across parity and clusters
Tables 3 and 4 and Figures 5a and b illustrate 

milk production dynamics by parity and behavioral 
cluster, modeled using the Wood gamma function [17]. 
Differences in peak time, peak yield, persistency, and 
cumulative yield were observed across clusters.

For primiparous cows (Table 3 and Figure 5a), 
Cluster 1 cows peaked at 52.92 ± 2.59 DIM with an 
average yield of 18.68 ± 0.30 kg/day. Their cumulative 
305-DIM yield was 4550.29 ± 7.09 kg. Cluster 0 cows 
peaked earlier at 50.82 ± 3.45 DIM with a slightly higher 
peak yield of 18.95 ± 0.43 kg/day and a cumulative yield 
of 4512.76 ± 104.95 kg. The cow in Cluster 2 exhibited 
a delayed peak (68.02 DIM) with a low peak yield 
(13.31 kg/day), followed by a sharp decline – indicating 
possible physiological or environmental stress.

Figure 2: The figure display (a) rolling rest time (minutes/day) of primiparous cows (n = 173) and (b) rolling rest time 
(minutes/day) of multiparous cows (n = 53) in two clusters groups (0, and 1) across −3 to 30 days postpartum, with 95% 
confidence interval.

b

a
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For multiparous cows (Table 4 and Figure 5b), both 
clusters outperformed primiparous groups. Cluster 1 
peaked at 51.99 ± 2.97 DIM (20.24 ± 0.48 kg/day) with 
a cumulative yield of 4816.38 ± 114.27 kg at 305 DIM. 
Cluster 0 cows peaked slightly earlier (47.45 ± 13.91 
DIM) and produced the highest overall yield (4896.57 
± 252.14 kg). Despite higher variation in Cluster 0, both 
clusters followed typical lactation trajectories with early 
peaks and gradual declines.

Multiparous cows in Clusters 0 and 1, on the 
other hand, reached their peak early on, at 47.45 ± 
13.91 DIM and 51.39 ± 3.11 DIM, respectively, and 
had slightly higher peak yields of 20.92 ± 1.06 kg/day 
and 20.24 ± 0.48 kg/day. This pattern suggests that the 
lactation strategy favors an early, intense production 
phase, followed by a more pronounced decline. 
Despite the rapid decline following the peak, these 
animals achieved the highest cumulative yield among 
multiparous groups at 4896.57 ± 252.14 kg per 305 DIM, 
marginally surpassing Cluster 1’s output yield of 4816.38 
± 114.27 kg per 305 DIM. Although no statistically 
significant differences were observed between clusters, 
Figure 5b demonstrates higher variability in production 
within Cluster 0, suggesting higher individual variation 
in lactation efficiency and environmental adaptation. 
The wider CI in Figure 5b visually highlights this 

variability, reinforcing the importance of considering 
both individual-level differences and inter-individual-
level variability when inspecting production trends in 
the herd.

These findings confirm that parity and cluster 
classification significantly influence lactation patterns. 
Multiparous cows consistently produced higher yields 
than primiparous cows. Although differences across 
clusters were not statistically significant, clustering 
helped uncover distinct lactation trajectories. This 
classification has practical value in refining feeding 
strategies and herd management practices tailored to 
specific lactation profiles.

Validation of Wood’s lactation curve model
Validation of the Wood lactation model (Table 5) 

demonstrated moderate predictive performance across 
parity and cluster groups. R² values ranged from 0.69 
to 0.83 in primiparous cows, with the lowest value 
observed in Cluster 2 (single cow), and from 0.80 to 0.82 
in multiparous cows. Mean absolute error (MAE) ranged 
from 1.05 to 1.48 across all groups, indicating generally 
stable lactation patterns. These results suggest that the 
Wood model provides reliable estimates of milk yield 
in tropical conditions, despite minor variability across 
parities and clusters.

Figure 3: The figure explains (a) rolling rest per bout (minutes/bout/day) of primiparous cows (n = 173) across three cluster 
groups (0, 1, and 2) and (b) rolling rest per bout (minutes/bout/day) of multiparous cows (n = 53) across two cluster groups 
(0, and 1), with 95% confidence interval, across −3 to 30 days postpartum.

b

a



doi: 10.14202/vetworld.2025.1109-1126

1119

Figure 4: The figure demonstrates (a) rolling restlessness ratio of primiparous cows (n = 173) in three cluster groups 
(0, 1, and 2) and (b) rolling restlessness ratio of multiparous cows (n = 53) in two cluster groups (0, and 1) across −3 to 
30 days in milk postpartum, with 95% confidence interval.

b

a

Table 6: Univariate Cox regression analysis of reproductive variables.

Variables Cluster n Β SE p-value HR 95% CI

Lower Upper

1st heat 40 DIM Cluster (0) 66 0.37 0.22 0.09 1.44 0.94 2.20
Cluster (1) 160 Ref

1st heat 60 DIM Cluster (0) 66 0.27 0.17 0.10 1.32 0.95 1.82
Cluster (1) 160 Ref

1st heat 90 DIM Cluster (0) 66 0.20 0.15 0.19 1.22 0.91 1.65
Cluster (1) 160 Ref

1st service 60 DIM Cluster (0) 66 0.04 0.20 0.85 1.04 0.71 1.52
Cluster (1) 160 Ref

1st service 90 DIM Cluster (0) 66 0.00 0.16 1.00 1.00 0.74 1.36
Cluster (1) 160 Ref

1st service 120 DIM Cluster (0) 66 -0.02 0.15 0.91 0.98 0.73 1.32
Cluster (1) 160 Ref

Pregnancy 100 DIM Cluster (0) 66 0.24 0.26 0.34 1.28 0.77 2.12
Cluster (1) 160 Ref

Pregnancy 150 DIM Cluster (0) 66 0.16 0.20 0.43 1.17 0.79 1.74
Cluster (1) 160 Ref

Pregnancy 200 DIM Cluster (0) 66 0.10 0.18 0.57 1.11 0.78 1.56
Cluster (1) 160 Ref

DIM=Number of days in milk, HR=Hazard ratio, CI=Confidence interval.
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DISCUSSION

Behavioral dynamics in dairy cows: Temporal trends 
and implications

This study presents a comprehensive analysis 
of behavioral dynamics in Holstein Friesian cows by 
examining postural behavioral indicators – including 
rolling activity, rest time, rest per bout, and restlessness 
ratio – across both primiparous and multiparous cows 
using cluster analysis from −3 to 30 DIM. Marked 
behavioral distinctions emerged between parity groups, 
reflecting their physiological and metabolic adaptations 
to the demands of early lactation. These adaptations 
varied across clusters and parity, offering meaningful 
insights into herd behavior.

Primiparous cows in Clusters 0, 1, and 2 
demonstrated elevated rolling activity during early 
lactation, with Cluster 1 peaking at approximately 

300 min/day soon after calving. This heightened activity 
likely reflects physiological and behavioral adjustments 
to lactation onset [44], driven by calving-related 
stress [45, 46] and increased energy demands [14, 17]. 
Conversely, multiparous cows displayed slightly reduced 
activity levels compared to primiparous counterparts, 
suggesting more efficient physiological adjustment. 
All animals generally returned to baseline activity 
within 2 weeks postpartum, consistent with earlier 
findings [10]. However, further investigation is 
warranted to elucidate the interplay of physiological 
and environmental adaptation in diverse populations, 
contributing to improved welfare strategies.

Resting behavior, a key indicator of cow 
welfare and productivity, revealed parity- and 
cluster-specific differences. A general decline in 
resting time was observed shortly after calving in 
all groups (Figures 2a and b) [46–48]. Primiparous 

Figure 5: The figure demonstrates (a) predicted milk yield (kg/day) of primiparous cows (n = 173) across three cluster groups 
(0, 1, and 2) and (b) predicted milk yield (kg/day) of multiparous cows (n = 53) within two cluster groups (0, and 1), with 
95% confidence interval.

b

a
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cows in Clusters 0 and 1 maintained consistently 
lower resting times compared to multiparous cows. 
Notably, the primiparous cow in Cluster 2 exhibited 
an excessive resting duration exceeding 1200 min/day, 
potentially signaling underlying metabolic or health 
challenges [49, 50]. Importantly, resting times did not 
return to pre-calving levels by 30 DIM, underscoring 
the sustained impact of calving, milking routines, and 
management practices [10, 44, 46, 47]. These findings 
corroborate previous reports parity-related resting 
disparities [44, 48, 51] and expand on earlier research 
with a longer observation window.

Analysis of rest per bout durations offered insights 
into recovery from parturition and management-
related stress [52]. Both parity groups in Clusters 0 and 
1 maintained stable, moderate rest per bout durations 
(~90 min/day), suggesting effective adaptation to 
parturition and routine milking schedules [48, 53]. 
However, the primiparous cow in Cluster 2 demonstrated 
significantly extended rest durations post-calving, 
likely reflecting compromised health or environmental 
stress exposure. Overall, primiparous cows showed 
more consistent bout durations compared to their 
multiparous counterparts (Figures 3a and b), possibly 
due to acclimatization to new milking protocols [44, 48]. 
Multiparous cows, being heavier and more physically 
mature, generally exhibited longer resting durations 
per bout due to reduced ease in transitioning between 
postures [44, 48, 52].

The restlessness ratio further illuminated adaptive 
behavioral patterns. Both primiparous and multiparous 
cows demonstrated heightened restlessness on the day 
of calving [10, 46, 47]. Primiparous cows in Cluster 1 had 
the highest restlessness scores, while those in Cluster 0 
exhibited more moderate responses, suggesting more 
rapid adjustment to postpartum routines [10, 44, 48]. 
A similar pattern was noted in multiparous cows, likely 
due to physiological or metabolic constraints reducing 
their responsiveness to environmental shifts.

Variations in restlessness ratio corroborate findings 
from both temperate and tropical production systems, 
indicating its relevance to reproductive function. 
Elevated restlessness in temperate zones has been 
linked to delayed estrus [44, 53], whereas in tropical 
climates, it is often associated with environmental 
stressors such as heat, which impair estrus expression 
and insemination outcomes [54–56]. Cluster 1 cows, 
which exhibited higher restlessness and delayed estrus, 
support the hypothesis that behavioral stress impedes 
reproductive recovery. These observations reinforce the 
importance of integrating behavioral metrics into estrus 
detection systems, especially under tropical stress 
conditions.

Reproductive performance and behavioral adaptation
This study evaluated the reproductive outcomes 

of Holstein Friesian cows in a tropical climate, 
emphasizing the influence of behavioral patterns and 

lactation dynamics. Cluster 1 cows exhibited increased 
restlessness, shorter rest durations, and altered activity 
patterns – factors likely contributing to delayed estrus 
and prolonged time to first service compared to Cluster 
0. While statistical significance was not reached, these 
trends align with previous evidence suggesting that 
reduced rest and heightened restlessness may hinder 
reproductive recovery [53, 54].

Cows in Cluster 0 demonstrated a 44% greater 
likelihood of resuming estrus by 40 DIM (HR = 1.44, 
p = 0.09), a trend that strengthened over time. Their 
lower restlessness and higher rest times suggest 
reduced physiological stress and more efficient estrus 
manifestation [57–59]. Moreover, stable lactation 
patterns in Cluster 0 indicate lower early lactation stress, 
enabling greater energy allocation toward reproductive 
restoration [50, 60]. These observations align with 
prior research showing that lower metabolic strain and 
smoother LCs promote faster reproductive recovery in 
tropical settings [55, 56].

Cluster 0 cows also experienced shorter intervals 
to first service (e.g., HR = 1.04, p = 0.85 at 60 DIM), 
further supporting the notion that reduced behavioral 
stress facilitates postpartum recovery. Their longer rest 
periods and lower restlessness ratios likely promoted 
uterine involution and ovarian cyclicity [61, 62], 
optimizing reproductive readiness [49, 50].

Although conception rates between clusters did 
not differ significantly, Cluster 0 cows demonstrated 
higher success rates – 28% greater at 100 DIM 
(HR = 1.28, p = 0.34), with continued improvement 
through 200 DIM. These patterns suggest that 
behavioral stability and lower lactation stress promote 
favorable reproductive conditions, particularly under 
tropical stressors known to compromise estrus and 
oocyte quality [55, 61, 63].

Tailored management interventions that reduce 
restlessness, promote rest, and support balanced 
lactation profiles can substantially enhance postpartum 
recovery and fertility in tropical dairy herds.

Milk production dynamics and lactation modeling
The clustering analysis revealed substantial 

distinctions in milk production dynamics across parity 
and behavioral cluster groups, emphasizing the value 
of behavioral metrics in shaping lactation trajectories. 
Differences were evident in peak time, yield, persistency, 
and cumulative milk production (Tables 3 and 4, 
Figures 5a and b). The Wood gamma function model [17] 
effectively captured lactation variability when combined 
with early behavioral metrics.

Among primiparous cows, Cluster 1 achieved 
greater persistency and cumulative yield compared 
to Cluster 0, despite a slightly delayed peak 
(Table 3 and Figure 5a). This suggests that elevated 
activity and restlessness in Cluster 1 (Figures 1a and 4a) 
did not adversely impact sustained milk output. These 
findings are consistent with previous studies by Josefson 
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et al. [64] and Marumo et al. [65], indicating that 
primiparous cows often compensate for early stress 
through enhanced persistency.

The single cow in Cluster 2 exhibited an 
atypical LC, with a delayed peak and lower yield 
(Table 3 and Figure 5a), alongside behavioral anomalies 
– such as excessive rest time (>1200 min) and rest per 
bout (>700 min) (Figures 2a and 3a). These abnormalities 
may indicate health issues or negative energy 
balance [14, 50, 66] and support previous findings 
by Lee et al. [14], Cattaneo et al. [50], and Singh and 
Bhakat [68] linking atypical LCs with metabolic stress, 
suboptimal body condition recovery, and heightened 
disease risk. Future studies should refine clustering 
models to better identify LC deviations and assess their 
predictive value for health and productivity.

In multiparous cows, Cluster 0 demonstrated 
earlier peak times and greater persistency than Cluster 
1 (Table 4 and Figure 5b). The sharper post-peak decline 
in Cluster 1 may reflect physiological strain and elevated 
behavioral stress during early lactation. Increased activity 
and restlessness, along with reduced rest durations 
(Figures 1b and 4b), suggest a maladaptive response to 
metabolic and environmental demands [53, 69, 70].

Cows in Cluster 0 of both parity groups exhibited 
more consistent behavioral and lactation profiles. 
Reduced agitation, extended resting durations, and 
stable rest per bout metrics facilitated recovery 
from parturition stress and supported sustained 
lactation performance. These findings align with 
earlier reports indicating higher yield and persistency 
in multiparous cows, particularly with stable 
behavioral patterns [14, 71, 72]. Conversely, higher 
persistency among primiparous cows, despite lower 
peak yields, supports previous claims regarding their 
physiological immaturity and limited mammary gland 
development [44, 65, 73, 74].

Behavioral traits, particularly rest duration, appear 
strongly associated with milk yield. Previous studies by 
Tucker et al. [53] and McWilliams et al. [75] suggest 
milk output can increase by 1.36–2.72 kg/day through 
optimized early rest periods. In this study, cows in 
Cluster 0 experienced fewer behavioral fluctuations and 
maintained higher production consistency during early 
lactation.

LC modeling and limitations
The Wood gamma function model [17] successfully 

captured LC characteristics across clusters and parities. 
In primiparous Clusters 0 and 1, the model effectively 
reflected gradual peak onset and high persistency. 
Cluster 0 cows in the ≥2 parity group achieved the 
highest cumulative yield at 305 DIM. Their flatter 
LC trajectory is characteristic of younger cows still 
undergoing mammary gland development [73, 74].

Among multiparous cows, the model fit was 
equally strong, capturing more intense production early 
on and subsequent yield decline. For Cluster 0, early 

peak and high cumulative output were followed by 
a steep drop, consistent with previous reports by Lee 
et al. [14] and Masía et al. [76] linking high early yield to 
accelerated metabolic decline.

These results highlight contrasting lactation 
strategies: Multiparous cows achieve higher yield but 
exhibit sharper declines, whereas primiparous cows 
sustain lower but more persistent production. Accurate 
modeling of both typical and atypical LCs requires high-
resolution tools capable of distinguishing nuanced 
curve profiles.

Notably, this study faced several limitations. 
Sensor placement on the right hind leg may introduce 
inconsistencies due to variation in movement or 
positioning. Cluster 2’s sample size (n = 1) limited 
statistical power for reproductive comparisons. In 
addition, the single-farm setting and use of one sensor 
model constrain generalizability. Future research 
should incorporate multisensor approaches, validate 
findings across diverse environments, and assess cross-
farm reproducibility to enhance external validity and 
applicability.

CONCLUSION

This study provides an integrative assessment 
of early postpartum behavioral dynamics and their 
association with reproductive performance and milk 
production in Holstein Friesian cows under tropical 
conditions. By employing K-means clustering on sensor-
derived postural behavioral variables – namely, rolling 
activity, rest time, rest per bout, and restlessness ratio 
– the study identified distinct behavioral phenotypes 
across parity groups. The application of the Wood 
gamma function model [17] further enabled the 
characterization of LCs, elucidating variations in peak 
yield, persistency, and cumulative milk production 
across clusters.

The results demonstrated that cows in Cluster 
0, characterized by more stable activity levels, longer 
rest durations, and lower restlessness ratios, exhibited 
superior reproductive performance trends and higher 
cumulative milk yields. In contrast, cows in Cluster 1, 
which displayed elevated early postpartum activity and 
restlessness, experienced delayed estrus resumption 
and a steeper decline in milk yield post-peak. The single 
animal in Cluster 2 exhibited atypical behavioral and 
lactation profiles, indicating possible underlying health 
or metabolic disorders. These findings underscore the 
relevance of behavioral clustering in understanding 
the physiological responses of dairy cows during 
early lactation, particularly in high-stress tropical 
environments.

A key strength of this study lies in its integration 
of high-resolution behavioral sensor data with 
reproductive and lactation outcomes over an extended 
postpartum window (−3 to 30 DIM), combined with 
rigorous statistical modeling using Cox regression and 
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LC fitting. The use of cluster-based behavioral profiles 
provided a novel framework for identifying animals 
at risk of reproductive inefficiency or suboptimal milk 
production, offering actionable insights for precision 
dairy management.

However, several limitations warrant consider-
ation. First, the use of a single commercial dairy farm 
and a limited number of animals in certain clusters 
(particularly Cluster 2) restricts the generalizability 
and statistical power of the findings. Second, reliance 
on a single sensor placement (right hind leg) may 
introduce measurement variability due to differences in 
locomotion and posture. Third, the Wood model, while 
effective in capturing general lactation trends, does not 
account for external modifiers such as disease, heat 
stress, or nutritional changes.

Future studies should address these limitations by 
incorporating larger, multi-farm datasets with diverse 
environmental and managerial conditions. Integration 
of multi-sensor platforms, real-time data streaming, 
and advanced machine learning techniques may 
further enhance the predictive capacity of behavioral 
models. Moreover, exploring the causal mechanisms 
linking behavioral traits to reproductive physiology and 
metabolic status could refine early detection systems 
for improving fertility and productivity in tropical dairy 
systems.

In summary, this study highlights the practical 
utility of sensor-based behavioral clustering in 
identifying lactation and reproductive patterns and 
advocates for the development of precision tools 
tailored to the environmental and physiological realities 
of tropical dairy farming.
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