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A B S T R A C T

Background and Aim: The gut microbiota of broilers plays a pivotal role in nutrient absorption, immune modulation, 
and mineral metabolism. Feed additives can influence these microbial and physiological processes, yet their integrated 
effects remain insufficiently understood. This study aimed to intelligently evaluate the impact of various feed additives on 
the intestinal microbiota and mineral composition of broiler chickens and to develop machine learning (ML) models for 
clustering and classification of diet-associated mineral and microbial profiles.

Materials and Methods: A total of 385 Arbor Acres broilers (7 days old) were allocated into 11 groups, including one control 
semi-synthetic diet (SSD), one group with a semi-synthetic deficient diet (SSDD), and nine experimental groups receiving 
SSDD with different additives: Probiotics (Soya-bifidum and Sporobacterin), dietary fibers (cellulose, lactulose, and chitosan), 
enterosorbents (enterosgel and activated carbon), and ultrafine particles (UFPs) (Cu and Fe). Microbiota composition was 
assessed by 16S ribosomal RNA sequencing, and body mineral composition was determined through inductively coupled 
plasma mass spectrometer. To overcome data scarcity, synthetic records were generated using conditional tabular generative 
adversarial networks. K-means and hierarchical agglomerative clustering were used for mineral profile grouping, while 
logistic regression, SVM, and decision tree models classified diet types.

Results: Hierarchical clustering revealed six distinct mineral profile groups (Silhouette = 0.524), with SSD and SSDD forming 
separate clusters. Feed additives such as UFPs, chitosan, and activated carbon induced similar mineral patterns. Key 
differentiating biomarkers were cobalt, zinc, strontium, arsenic, and lithium (p < 0.05). The decision tree classifier achieved 
74% accuracy in predicting diet types based on microbiota data. Alpha diversity analysis showed enhanced microbial 
richness in groups fed lactulose, enterosgel, cellulose, or activated carbon.

Conclusion: ML effectively elucidated complex relationships between diet, microbiota composition, and mineral metabolism 
in broilers. The integration of clustering and predictive models demonstrates the feasibility of intelligent feeding systems 
tailored to optimize gut health and nutrient utilization. Future studies integrating multi-omics data and broader farm-level 
validation will strengthen precision nutrition frameworks for sustainable poultry production.
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INTRODUCTION

In recent years, rapid digitalization and the integration of artificial intelligence (AI) technologies have 
transformed multiple industries, including agriculture and animal husbandry [1, 2]. Modern agricultural 
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enterprises increasingly employ AI-based solutions for crop yield forecasting, resource optimization, and animal 
health monitoring [3–5]. Within this transformative context, the present study emphasizes the intelligent analysis 
of the intestinal microbiota in broiler chickens, a critical determinant of poultry productivity and health.

Broiler performance is closely linked to feed quality, gut microbiota composition, and mineral metabolism. 
The gastrointestinal microbiota directly influences nutrient absorption, accumulation, and excretion. 
Reed et al. [6] demonstrated that microbiota composition affects zinc (Zn) bioavailability in hosts; a reduction 
in Bacillota abundance decreases short-chain fatty acid (SCFAs) production and promotes Proteobacteria 
proliferation. These bacteria competitively absorb Zn, exacerbating host mineral deficiencies.

Feed additives are widely used to enhance poultry health and growth [7], yet their effects on intestinal 
microbial diversity and community structure remain insufficiently characterized. In this regard, intelligent data 
analysis techniques, such as machine learning (ML) and statistical modeling, offer powerful tools to identify 
hidden relationships between feed additives and microbiota dynamics, enabling data-driven feed optimization 
for improved productivity. ML and deep learning (DL) approaches effectively model complex, non-linear microbial 
interactions often overlooked by traditional analytical methods [8], providing a multidimensional and integrative 
understanding of the microbiome’s role in metabolism and health [9].

Recent investigations have confirmed the efficacy of several additives in promoting intestinal development 
and nutrient utilization. Probiotics, for instance, accelerate microbiota maturation, enhance immune competence, 
and improve feed conversion efficiency, yielding economic benefits [10]. They stabilize intestinal flora, suppress 
pathogenic colonization [11], stimulate goblet cell proliferation, and enhance mucosal T-cell immunity [12]. 
Prebiotics such as lactulose similarly improve nutrient absorption and intestinal microbial balance, thereby 
supporting growth performance [13].

Given the adverse effects of antibiotic use on microbial homeostasis and interbacterial 
interactions [14, 15], probiotics and prebiotics are increasingly recognized as sustainable alternatives. Dietary 
fibers, comprising indigestible polysaccharides and lignin, reach the hindgut intact, improving feed conversion, 
digestion efficiency, and overall growth [16]. Enterosorbents, by contrast, mitigate xenobiotic absorption, 
modulate the intestinal biochemical milieu, and selectively promote beneficial microbiota while suppressing 
pathogens [17, 18].

Phytogenic additives, rich in bioactive polyphenols (e.g., flavonoids, eugenol, and curcumin), further support 
intestinal health through antibacterial, antioxidant, immunomodulatory, and anti-inflammatory mechanisms. 
More recently, ultrafine or nanodispersed forms of chemical elements have gained attention due to their 
high bioactivity, improved trace element bioavailability, and lower toxicity compared to conventional mineral 
forms [19]. Miroshnikova et al. [20] have shown that ultrafine metal particle (UFP) preparations can influence 
the organism’s elemental status in diverse ways; for example, UFP Cu and UFP Fe supplementation have been 
associated with elevated serum calcium and iron concentrations.

Despite significant progress in poultry nutrition and microbiome research, there remains a lack of integrative 
studies that link feed additive supplementation, intestinal microbiota composition, and mineral metabolism 
using intelligent computational approaches. Most previous investigations have examined these aspects 
independently, either evaluating microbial community shifts, nutrient absorption, or growth performance, but 
without systematically modeling their interrelationships. Furthermore, conventional statistical analyses often 
fail to capture the non-linear and multidimensional interactions that exist between gut microbial taxa, elemental 
balance, and dietary interventions.

Another critical gap lies in the scarcity of high-quality, comprehensive datasets for modeling microbiota–
mineral interactions under various dietary conditions. The ethical and logistical limitations of animal experiments 
further constrain sample size and variability, restricting the use of robust predictive analytics. Consequently, the 
potential of ML and DL algorithms to uncover hidden patterns within such biological systems remains underutilized 
in poultry science. Similarly, while several studies have demonstrated the benefits of probiotics, prebiotics, 
and mineral additives on performance metrics, their combined impact on gut microbial diversity, mineral 
homeostasis, and predictive dietary classification has not been explored using synthetic data augmentation or 
clustering-based models.

Therefore, there is a pressing need to develop AI-driven frameworks capable of integrating microbiota 
sequencing, elemental composition, and feeding strategies into predictive and interpretable models. Addressing 
this gap would advance precision nutrition and data-driven decision-making in poultry management.
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The present study aims to conduct an intelligent analysis of the intestinal microbiota and mineral metabolism 
in broiler chickens subjected to different feed additives by applying ML algorithms for data-driven modeling and 
prediction. Specifically, the study seeks to:
1.	 Evaluate the effects of various dietary supplements, including probiotics, prebiotics, enterosorbents, dietary 

fibers, and UFPs (Cu and Fe), on the intestinal microbial diversity and mineral composition of broilers.
2.	 Develop synthetic data using a conditional tabular generative adversarial network (CTGAN) to enhance data-

set robustness and overcome experimental sample-size limitations while adhering to ethical standards in 
animal research.

3.	 Apply clustering algorithms (K-means and hierarchical agglomerative clustering [HAC]) to identify mineral 
profile patterns and classify groups of broilers with similar dietary responses.

4.	 Construct and evaluate predictive models (logistic regression, support vector machine [SVM], and decision 
tree) for classifying diet types and assessing the relationship between microbiota composition and nutrient 
deficiencies.

Through these objectives, the study aims to establish a computationally intelligent framework for 
understanding how feed additives modulate gut microbiota and mineral metabolism, thereby enabling the design 
of optimized and individualized feeding strategies that enhance broiler health, productivity, and sustainability.

MATERIALS AND METHODS

Ethical approval
Animal care and experimental studies were carried out in accordance with the instructions and 

recommendations set out in the relevant normative acts. The research followed the Model Law of the 
Interparliamentary Assembly of the Member States of the Commonwealth of Independent States “On 
the Treatment of Animals,” Article 20 (Resolution No.  1 of the MA of CIS Member States, May 21, 2024). 
Measures were taken to minimize animal suffering and reduce the number of test samples (Protocol No.  1, 
dated May 21, 2024).

Study period and location
The study was conducted during May and June 2024 . The experimental work was performed at the 

biological clinic of the Federal State Budgetary Institution of the Federal Research Center for Biological Systems 
and Agrotechnologies of the Russian Academy of Sciences in Orenburg (Accreditation Certificate PA.RU21PF59, 
December 2, 2015).

Experimental animals
Broiler chickens of the Arbor Acres cross were selected for the experiment (CJSC “Orenburg Poultry Farm,” 

www.pfo56.ru). All birds were kept under identical environmental conditions. General diets for experimental 
poultry were prepared according to the recommendations of the Federal State Budgetary Scientific Institution 
Federal Scientific Center “All-Russian Research and Technological Poultry Institute” (ARRTPI) [21]. The birds 
were fed twice daily. Feed intake and body weight changes were monitored weekly, followed by the calculation 
of average daily weight gain. Anatomical (post-slaughter) carcass dissection was performed according to the 
ARRTPI method [22].

For the experiment, 385 broiler chickens (7 days old) were used and divided into 11 groups (n = 35) using the 
analog-group method. As part of the experiment, the following additives were introduced into the diets: Probiotic 
drugs (Soya-bifidum [strain B. longum] and Sporobacterin [strain B. subtilis]); dietary fibers (microcrystalline 
cellulose [E460, Hiranya Cellulse Products, India], lactulose [VTF, Moscow], and food-grade chitosan [Orison 
Chemicals Ltd, China]); enterosorbents (enterosgel [active ingredient: Polymethylsiloxane polyhydrate; TNK 
SILMA, Russia] and activated carbon [active ingredient: “Activated charcoal,” No. R N001033/01, Pharmstandard-
Lexredstva, Russia]); and ultrafine particles (UFPs) (UFP copper, diameter 55 nm, Moscow, Russia; and UFP iron, 
diameter 90 nm, Moscow, Russia).

Experimental design
The experimental design included the following:
•	 K1 (control): Semi-synthetic diet (SSD) without feed additives.
•	 K2: SSD deficient in trace elements semi-synthetic deficient diet (SSDD) (Fe, Mn, Cu, Zn, cobalt [Co], Mo, 

and Se) according to A.K. Osmanyan (Table 1).
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Table 1: Composition of the experimental rations (g/100 g of feed).

No. Element Diet

К1 (SSD) К2 (SSDD)

1 Casein 20 20
2 Gelatin 5 5
3 Cellulose 3 3
4 Vegetable oil 3 3
5 Choline chloride 0.2 0.2
6 Glucose 1.25 1.25
7 The rice is polished, boiled, and washed in distilled water. 61.38 61.38
8 Methionine 0.1 0.1
9 Cystine 0.2 0.2
10 CaHPO4*H2O 1.8 1.8
11 CaCO3 1.45 1.45
12 KH2PO4 1.013 1.013
13 KCl 0.21 0.21
14 Na2CO3 0.555 0.555
15 MnCl*4H2O 0.04 ‑
16 FeSO4*7H2O 0.05 ‑
17 MgSO4*7H2O 0.615 0.615
18 KJ 0.001 0.001
19 CuSO4*5H2O 0.001 ‑
20 ZnCl2 0.016 ‑
21 CoCl2 0.0002 ‑
22 NaMoO4*2H2O 0.0008 ‑
23 Na2SeO3 0.000015 ‑
24 Vitamin mixture * 0.052 0.052

*Vitamin mixture (mg per 100 g of feed): B1, 2.5 mg; B2, 1.5 mg; B6, 0.6 mg; B12, 0.002 mg; Ca‑pantothenate, 2.0 mg; biotin, 0.06 mg; folic acid, 0.4 mg; 
K3, 0.5 mg; C, 25.0 mg; PP, 15.0 mg; A PER 1000 IU; D3, 360 IU; E, 0.5%. SSD=Semi‑synthetic diet, SSDD=Semi‑synthetic deficient diet.

•	 I experimental groups (EG): SSDD + Soya-bifidum.
•	 II EG: SSDD + Sporobacterin.
•	 III EG: SSDD + microcrystalline cellulose.
•	 IV EG: SSDD + lactulose.
•	 V EG: SSDD + food chitosan.
•	 VI EG: SSDD + enterosgel.
•	 VII EG: SSDD + activated carbon.
•	 VIII EG: SSDD + UFP Cu.
•	 IX EG: SSDD + UFP Fe.

The dosages used for various diets and related feed additives are shown in Table 2. Chickens were given 
distilled water ad libitum. Birds were slaughtered on day 42 under the action of etabolo ether.

Sample collection and laboratory analyses
During slaughter, composite samples of muscle, skin, internal organs (tissues of the gastrointestinal tract, 

heart, lungs, liver, kidneys, spleen, and gonads), feathers, bone tissue with central nervous system, and internal 
fat were collected [23] . Laboratory analyses determined the moisture content of feed (Government standard 
[GOST] 13586.5–93; GOST 29143–91), crude fiber (GOST 13496.2–84), protein (GOST 10846–74), and ash 
content (GOST 10847–74).

Before slaughter, broilers were deprived of water for 4–6 h and feed for 12 h. Birds were weighed before 
and after slaughter, and the individual tissues and organs were also weighed. During anatomical dissection 
(GOST 13496.0–70), average samples of muscle, bone, skin, internal organs, and fat were prepared for each bird. 
Homogenization was performed using a laboratory mill, followed by drying at ≤70°C. Samples were stored in 
sealed glass containers.

The indoor environment complied with ARRTPI recommendations. Growth and development were assessed 
weekly through individual weighing and calculation of average daily gain. All birds were reared under identical 
housing and feeding conditions.
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Table 2: Dosages of the experimental diets.

No. Abbreviation Diet Dosage

1 К1 Semi‑synthetic diet 60 g per day for up to 28 days.
120 g. per day from day 28.

2 К2 A semi‑synthetic deficient diet 60 g per day for up to 28 days.
120 g per day from day 28.

3 I EG SSDD + soybean‑bifidum SSDD + 0.7 mL/kg of feed
4 II EG SSDD + Sporobacterin SSDD + 0.25 mL/kg of feed
5 III EG SSDD + Microcrystalline Cellulose SSDD + 0.25 g/kg feed
6 IV EG SSDD + Lactulose SSDD + 1 g/kg feed
7 V EG SSDD + food chitosan SSDD + 0.5 g/kg of feed
8 VI EG SSDD + Enterosgel SSDD + 6.0 g/kg of feed
9 VII EG SSDD + activated carbon SSDD + 3.0 g/kg of feed
10 VIII EG SSDD + UFP Cu SSDD + 1.7 mL/kg of feed
11 IX EG SSDD + UFP Fe SSDD + 17.0 mL/kg of feed

SSDD = Semi‑synthetic deficient diet, EG = Experimental groups.

Collected samples were used to determine the chemical and elemental composition of poultry tissues. The 
chemical composition of droppings, feed, and body tissues was analyzed according to GOST 31640–2012, GOST 
32044.1–2012, GOST 13496.15–2016, GOST 33319–2015, GOST 23042–2015, GOST 25011–2017, and GOST R 
31727–2012. Analyses were conducted at the Center for Collective Use of Biological Systems and Agrotechnologies 
of the Russian Academy of Sciences (https://ckp-rf.ru/ckp/77384/). The elemental composition of biosubstrates 
and compound feeds was determined using an Agilent 7900 inductively coupled plasma mass spectrometer with 
a 1260 Infinity II BIO-Inert high-performance liquid chromatography system.

DNA extraction and sequencing
Samples of intestinal contents were collected aseptically into sterile Eppendorf-type microtubes (“Nuova 

Aptaca S.R.L.,” Italy). DNA was extracted using a modified lysis procedure. Samples were incubated at +37°C for 
30 min in 300 μL of sterile lysis buffer (20 mM ethylenediaminetetraacetic acid, 1,400 mM NaCl, 100 mM Tris-HCl, 
pH 7.5) containing 50 μL lysozyme solution (100 mg/mL). Then, 10 μL of proteinase K (10 mg/mL; “Thermo Fisher 
Scientific, Inc.,” USA) and sodium dodecyl sulfate (1%) were added, followed by incubation for 30 min at +60°C.

Microbial biodiversity was analyzed by next-generation sequencing using a MiSeq sequencer (Illumina Inc., 
USA) with the MiSeq Reagent Kit v3 (600 cycles, сluster density 1.300 K/mm², Illumina Inc.) at the Center for 
Collective Use of Scientific Equipment “Persistence of Microorganisms.” DNA libraries were prepared according 
to the Illumina protocol using primers S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 for the V3–V4 region 
of the 16S ribosomal RNA (16S rRNA) gene. Sequencing was performed using the MiSeq Reagent Kit V3 PE600 
platform.

Operational taxonomic units (OTUs) were classified using the VAMPS tool and the RDP database (http://
rdp.cme.edu). Selected OTUs were aligned using the Basic Local Alignment Search Tool algorithm with the nr/nt 
database (National Center for Biotechnology Information) and SILVA ribosomal RNA gene sequences.

Sequencing and bioinformatics
A total of 814,981 reads were obtained for prokaryotes (16S rRNA gene), of which 567,814 passed quality 

filters. Data from 33 samples (average sequencing depth: 21,318 reads per sample; average read length: 251 bp) 
were used. For alpha diversity analysis, sequences were rarefied to a minimum depth of 15,814 reads per sample.

Bioinformatic processing used the PEAR v0.9.8 program (Exelixis Lab, Germany). Filtering, de-duplication, 
chimera removal, clustering, and contamination filtering were performed in USEARCH v11.0.667 (Edgar R.C., 
2010, USA) using fastq_filter, derep_prefix, and cluster_otus algorithms. Results were processed in Microsoft 
Excel 2021 (Microsoft Office, Washington, USA).

Dataset description
During the experiment, data on body mineral composition (BMC), intestinal microbiota, and weekly body 

weights were collected to establish physicochemical relationships and construct predictive machine-learning models.
The mineral dataset contained 25 chemical elements grouped as follows: Alkali metals (Li, Na, and K); 

alkaline earth metals (Mg and Ca); transition metals (V, Cr, Mn, Fe, Co, Ni, Cu, and Zn); post-transition metals (Sn 
and Pb); semi-metals (Al, Si, and As); non-metals (P, Se, and I); and heavy metals (Hg and Cd).
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The microbiota dataset included hierarchical levels: Phyla, classes, orders, families, and species. The 
intestinal microbiota was dominated by Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria, which 
were divided into 11 classes: Actinobacteria, Coriobacteriia, Bacteroidia, Bacilli, Clostridia, Erysipelotrichia, 
Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Dothideomycetes, and Gammaproteobacteria. 
Table  3 presents the division of microbiota taxa into orders and their functions in the broiler intestine. The 
dataset also includes family-level (38 total) and species-level (108 total) details.

Microbiota data were normalized using the Normalizer (norm = “11”) method to preserve relative 
proportions and eliminate scale effects. This L1 normalization ensures that the sum of absolute values for each 
vector equals one. Figure 1 presents the relative abundance of taxa by phylum.

Across all groups, the predominant phyla were Bacteroidetes and Firmicutes. Groups II, III, IV, VII, and VIII 
showed predominance of Bacteroidetes, and in group VIII, their number was twice as high as in additive-free 
groups. Bacteroidia was the most abundant class in groups II, III, IV, and VIII. Ascomycota appeared only in group III. 
In general, the classes Bacteroidia, Bacilli, and Clostridia dominated all diets, while Dothideomycetes represented 
the smallest fraction. Under SSD diet, Bacilli predominated, whereas in group VI, Clostridia were dominant.

Microbiota-mineral interaction mechanisms
The intestinal microbiota influences mineral metabolism through several biological mechanisms. 

Microorganisms of the major phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) affect mineral 
assimilation by enzymatic decomposition of feed components and synthesis of biologically active substances.

A key pathway involves fermentation of complex carbohydrates and fibers, producing SCFAs such as acetate, 
propionate, and butyrate. SCFAs enhance intestinal absorption of minerals (Ca, Mg, and Fe) by lowering pH and 
improving mineral salt solubility. Bacilli and Clostridia participate in sulfate-reduction and phosphate-metabolic 
pathways, regulating sulfur and phosphorus balance. Deltaproteobacteria activity is linked with reduction 
processes affecting trace-element availability.

Certain bacteria synthesize vitamins (e.g., Vitamin K) essential for bone mineralization and produce 
substances that facilitate mineral-ion transport across intestinal epithelia. Microbial metabolites may also 
regulate gene expression associated with minerotropism.

Differences in microbiota composition (e.g., dominance of Bacteroidetes and Clostridia in specific groups) 
correspond to variations in mineral metabolism, indicating an intimate link between microbial ecology and 
mineral assimilation/excretion.

Some EG exhibited similar microbiota profiles; for example, lactulose supplementation yielded comparable 
ecological niches, while others displayed distinct diversity patterns, reflecting ecological variability. Overall, the 
dataset describing BMC and intestinal microbiota supports investigation of complex dependencies and facilitates 
machine-learning modeling of additive effects.

Table 3: Characteristics of intestinal microbiota bacteria at the order level.

No. Order Characteristic

1 Micrococcales Moderate effect, some synthesis of vitamins, minimal effect on chicken growth
2 Mycobacteriales Rarely found in the digestive tract of birds, potentially harmful
3 Eggerthellales They modulate bile acid metabolism and improve fat absorption
4 Bacteroidales The main producers of short‑chain fatty acids (acetate and propionate): increases the intestinal mucosa’s 

energy exchange and improves feed conversion
5 Bacillales Bacillus and Enterococcus improve villi growth and immunity, whereas Staphylococcus and Listeria are 

pathogenic to dysbiosis
6 Lactobacillales They lower pH, suppress pathogens, and stimulate digestion and weight growth
7 Clostridiales Nourish the epithelium, stimulate the immune system/Clostridium perfringens cause necrotizing enteritis
8 Erysipelotrichales Improved feed conversion may cause inflammation
9 Kiloniellales They do not participate in feed fermentation
10 Rhizobiales Methanol/magnesium is metabolized; however, its role in the digestive tract of birds is minimal
11 Burkholderiales The effect of amino acid and organic acid exchange on productivity is insignificant
12 Bdellovibrionales Can control pathogenic bacteria
13 Enterobacteriales Non‑pathogenic Escherichia coli produce vitamin K (neutral + ), whereas pathogenic Salmonella/Klebsiella 

cause enteritis and reduce productivity.
14 Pseudomonadales They can absorb a wide range of organics; however, with dysbiosis, they cause inflammation
15 Xanthomonadales Plant phytopathogens are rare in the bird digestive tract
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Figure 1: The spread of the relative number of taxa by class.

Synthetic data generation
Conducting animal-related experiments requires considerable time and a suitable material base. The 

number of records studied for each group (n = 35) exceeds the threshold of 30 observations, at which the 
Central Limit Theorem provides an approximation to the normal distribution, allowing the correct application of 
parametric tests and ML models. However, the data describe complex relationships among components within a 
small sample size, which can lead to biased results. Synthetic data can help model these relationships, allowing 
expansion of the original dataset and assessment of how different combinations affect broiler condition and 
productivity. In addition, the use of synthetic data makes it possible to minimize the number of experiments on 
animals, in accordance with modern ethical standards.

Synthetic data can be generated using several approaches, including modeling based on statistical 
distributions (for example, normal, binomial, or Poisson), generative adversarial networks (GAN), variational 
autoencoders, simulation methods (agent-based modeling or systems of equations), and others [24–26].

As part of this research, a CTGAN-based method was implemented, which relies on concepts used in GAN 
but is adapted to work with continuous, categorical, and temporal data [27]. This approach allows generation 
of synthetic data that preserve the statistical properties of the original dataset, including relationships between 
variables. The method uses the GAN architecture consisting of a generator that creates synthetic data and a 
discriminator that evaluates its realism in comparison with real data.

An additional n = 165 synthetic records were generated for datasets on the BMC and intestinal microbiota 
of broilers using the CTGANSynthesizer model (https://github.com/sdv-dev). The Column Shapes Score = 
71.29% indicates moderate correspondence between synthetic and original column-shape distributions. The 
Column Pair Trends Score = 82.45% shows that the synthetic data successfully reproduce inter-variable trends 
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and dependencies. The Overall Score (Average) = 76.87% confirms that the generated dataset is of satisfactory 
quality and can be used to train machine-learning models.

Kernel-density-estimation graphs of real and synthetic taxon data by class and body-mineral composition 
are shown in Figures 2 and 3, respectively. More than half of the bacterial classes in the synthetic data have 
distributions that are close to the real ones, whereas Alphaproteobacteria, Erysipelotrichia, and unclassified 
Bacteria display broader distributions. All chemical elements of the body’s mineral composition in the synthetic 
dataset have distributions close to those observed in the real data.

The results demonstrate that CTGANSynthesizer successfully generates synthetic data that retain many of 
the statistical and biological characteristics of the original dataset. However, due to inherent limitations of data-
generation methods, synthetic data were used only for the training dataset, while machine-learning models 
were tested exclusively on real data.

Correlation analysis of data
A correlation analysis was conducted to assess the relationship between the abundance of microbial 

taxa in the avian gut microbiota and the concentrations of specific chemical elements in the body’s mineral 
composition. The Spearman rank correlation coefficient, a non-parametric statistical method robust to deviations 
from normality and the presence of outliers, was employed for this purpose, making it particularly suitable for 
biological data. Visualization of significant associations, defined as those with a Spearman correlation coefficient 
exceeding 0.7, is presented in Figure 4.

The highest positive correlation was observed in the pair [Roseburia, Si] = 0.82, which may indicate the 
importance of this taxon in the context of silicon metabolism. Moderately positive correlations were identified 
between pairs (Lachnospiraceae incertae sedis, B) = 0.7927, (Flavonifractor, B) = 0.7727, and (Escherichia_
Shigella, Ca) = 0.8049. Other taxa, such as Lachnospiraceae incertae sedis, Klebsiella, and Lactococcus, also 
showed moderate positive correlations with elements, such as lithium (Li) and nickel, suggesting possible roles 
in the metabolism of these minerals.

Strong negative correlations were observed between (Massiliimalia, Cd) = –0.8529 and (Massiliimalia, 
Mn) = –0.8108, indicating that the presence of Massiliimalia is associated with low cadmium and manganese 
concentrations. A  significant negative correlation was also found for (Hydrogeniiclostridium, Cr) = –0.7636. 
In addition, taxa such as Faecalibacterium and Petroclostridium showed negative correlations with selenium, 
suggesting their potential influence on selenium levels in the body.

Figure 2: Kernel-density-estimation graphs of real and synthetic taxon data by class.
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Figure 3: Kernel-density-estimation graphs of the mineral composition data of real and synthetic broiler bodies.

Thus, the correlation analysis revealed both positive and negative associations between gut-microbiota 
taxonomic diversity and the concentrations of specific elements in the body’s mineral composition. Strong 
positive correlations may reflect synergistic physiological or ecological interactions, possibly indicating element-
dependent modulation of microbial communities, while negative correlations may suggest competitive or 
inhibitory relationships that merit further investigation.

Data diversity analysis
Alpha diversity of the microbiota, a widely used ecological and microbiological metric for assessing species 

richness and evenness within an ecosystem, was analyzed to characterize the complexity and structure of the gut 
microbiota in the studied broilers.

Alpha diversity describes the diversity within a single community or sample. Several indexes are available 
for its calculation, each reflecting different aspects of diversity and sensitivity to ecological or sampling factors. 
The principal purpose of alpha-diversity calculation is to compare the total number of species within samples 
and assess the evenness of their distribution.

The main methods for assessing alpha diversity include the Shannon index, Simpson index, and species 
richness. In this study, the Simpson Diversity Index was chosen because it focuses on species richness, allows 
comparisons between systems, and is less sensitive to sample size than the Shannon index.

The Simpson index is defined as:

∑ S 2
ii=1

C= p
,

Where pᵢ is the proportion of individuals belonging to species I among all individuals, and S is the number 
of species observed. The Simpson index measures the relationship between intraspecific and interspecific 
interactions. Its value ranges from 0 to 1, representing minimal to infinite variety, respectively. Figure 5 presents 
a diagram showing the Simpson-index range for intestinal microbiota at the order level.
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For the SSD, which characterizes a richer mineral composition, the lower limit of the Simpson index was 0.32, 
indicating less minimal diversity compared with SSDD, while the upper limit was 0.48, suggesting that a richer diet 
may promote dominance of certain species and thus limit overall variety. The SSDD group displayed a wider range 
of diversity, indicating that under dietary deficiency, species interact more actively and adapt to limited resources.
Comparative evaluation of alpha diversity among supplement groups revealed that:
1.	 EG I, II, and IX exhibited lower minimum values (<0.37), suggesting a reduced variety of species when these 

additives were used, possibly limiting microbiota diversity.
2.	 EG III, IV, V, VI, VII, and VIII showed higher lower-limit values of alpha diversity, suggesting that these addi-

tives positively influence the maintenance of microbial biodiversity.

Clustering methods for BMC
To identify similar profiles of BMC among broilers fed different diets (SSD, SSDD, or SSDD + additives), 

unsupervised machine-learning methods were applied: K-means and HAC.

K-means

K-means is a clustering algorithm that divides a dataset into k specified clusters [28]. It iteratively assigns 
data points to clusters based on similarity and updates centroid positions according to the mean values of each 
cluster until convergence (no change in centroids). The algorithm was implemented in Python 3.12 using the 
Scikit-learn 1.6.1 library.

HAC

HAC constructs a hierarchical cluster structure [29]. The algorithm operates on a “bottom-up” basis, starting 
with each object as a separate cluster and progressively merging them into larger clusters. Unlike K-means, HAC 

Figure 4: Graphs of the distribution of taxa by elements of the mineral composition of the body.
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does not require a predefined number of clusters and enables visualization as a dendrogram. The method was 
implemented using the agglomerative clustering object from Scikit-learn and dendrogram visualization from the 
Scipy 1.15.2 library.

Clustering quality metrics

The following metrics were used to evaluate clustering quality [30, 31]:
•	 Silhouette score: Considers both intra-  and inter-cluster density (–1 to 1; values near 1 indicate good 

separation).
•	 Calinski-Harabasz index: Measures the ratio of between- to within-cluster variance (higher values = better 

clustering).
•	 Davies-Bouldin index: Represents the average ratio of inter-cluster distance to intra-cluster compactness 

(lower values = better clustering).
Each metric offers distinct strengths; therefore, they were used jointly for a comprehensive evaluation. 

Implementation of these clustering algorithms to identify body-mineral-composition profiles of broilers under 
different diets is described in the Results section.

Forecasting of deficient diets
Diet composition directly affects both the mineral content of the body and the structure of the intestinal 

microbiota. The most commonly used feed formulation is the SSD, comprising natural ingredients (cereals and 
plant materials) and synthetic components (amino acids, vitamins, and minerals). This formulation provides 
optimal conditions for gut-microbiota development and ensures adequate intake of essential nutrients and trace 
elements.

In this context, the development of a predictive model to classify diet type, specifically semi-synthetic 
or nutrient-deficient feed, based on intestinal-microbiota data from broilers, while accounting for nutrient-
deficiency compensation by dietary additives, represents a timely and scientifically relevant objective.
To address this task, the microbiota data were divided into two groups:
•	 SSD: Records corresponding to SSD
•	 Non-SSD: Records representing all other diets (10 types in total, including the deficient and nine supplemented 

diets with probiotics, fibers, enterosorbents, and UFPs).
The dataset was unbalanced, with a class ratio of 1:10 (SSD: Non-SSD). To control overfitting, fivefold cross-

validation was applied. Data were split into training (70%), validation (10%), and testing (20%) subsets.
Model performance was evaluated using a confusion matrix and the accuracy metric, which represents the 

proportion of correctly predicted cases among all model forecasts.
The following machine-learning models were implemented to solve the binary-classification problem of 

identifying SSD: Logistic Regression, SVM, and Decision Tree. These relatively lightweight models, with limited 
trainable parameters, perform effectively on small datasets without overfitting. Key hyperparameters optimized 
during training are summarized in Table 4.

Figure 5: The values of the Simpson index for the aggregation level are in order.
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To reduce class-imbalance effects during model training, a weighted loss function was applied, increasing 
the error penalty for the minority class. In addition, principal component analysis (PCA) was used to compress 
the feature space and enhance classification accuracy. The number of retained components ranged from 2 to 
the total number of initial features.

Implementation details of the classification algorithms and the identification of broilers on deficient diets 
using intestinal-microbiota data are presented in the Results section.

RESULTS

Analysis of clustering data results
K-means and agglomerative clustering algorithms were implemented to identify similar profiles of the BMC 

of broilers consuming different diets. The best hyperparameters were selected based on a series of experimental 
runs, and clustering quality was evaluated using the previously described metrics. The detailed results are 
presented in Table 5.

Selection of optimal clustering parameters

According to the experimental results, the HAC algorithm with the Euclidean distance and a cluster number 
of 6 (k = 6) yielded the best results. Based on the silhouette coefficient (0.5243) and the Calinski–Harabasz index 
(46.9378), this configuration achieved the best balance of inter-  and intra-cluster separation (bold values in 
Table 5).

The Davies-Bouldin index produced less informative results, likely because it does not effectively account 
for the complex structure and irregular shapes of the clusters. Figure 6 illustrates the clustering visualization 
derived using the PCA method, while Table 6 describes the six resulting clusters according to dietary intake.

Cluster composition and dietary grouping

The analysis revealed that the semi-synthetic and deficient diets formed distinct and well-separated 
clusters. The most widespread was Cluster 1, which represented a mineral profile common to broilers receiving 
UFPs additives, chitosan dietary fiber, and the enterosorbent activated carbon.

Table 4: Hyperparameters of the machine learning models used to determine diet.

No. Model Parameter Description

1 Logistic regression C Regularization coefficient
penalty The penalty rate

2 SVM C Regularization coefficient
kernel The kernel of the proposed model
degree Degree of polynomial

3 Decision tree max_depth Maximum decision tree depth
criterion The tree branching criterion

SVM = Support vector machine.

Table 5: Clustering data results on the mineral composition of broilers.

No. Model Hyperparameters Silhouette Kalinski‑Harabas Davis‑Boldin

1 K‑means Euclidean, k = 2 0.429042 32.447942 0.789693
Euclidean, k = 4 0.429173 46.153924 0.965046
Euclidean, k = 6 0.455775 40.727667 1.018787

2 Hierarchical (average) Euclidean, k = 2 0.445899 21.849180 0.499230
Euclidean, k = 4 0.429173 46.153924 0.965046
Euclidean, k = 6 0.524312 46.937840 0.716781
Manhattan, k = 2 0.445899 21.849180 0.499230
Manhattan, k = 4 0.429173 46.153924 0.965046
Manhattan, k = 6 0.489519 45.080141 0.797523
Chebysheve, k = 2 0.445899 21.849180 0.499230
Chebysheve, k = 4 0.320102 31.933266 0.908929
Chebysheve, k = 5 0.487386 42.491278 0.960623
Minkowski (p = 1.5), k = 2 0.445899 21.849180 0.499230
Minkowski (P = 1.5), K = 4 0.429173 46.153924 0.965046
Minkowski (p = 1.5), k = 6 0.524312 46.937840 0.716781

The Silhouette score and the Kalinski‑Harabas index are highlighted in bold, which correspond to the most effective configuration of the clustering model 
parameters.
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The next major cluster corresponded to broilers that received probiotic feed additives (Soya-bifidum and 
Sporobacterin). Another closely related cluster comprised birds supplemented with Enterosgel and lactulose, 
both of which produced a similar mineral composition profile.

Statistical validation of clustering

Statistical analysis confirmed the reliability of the six-cluster solution. Cluster formation was driven primarily 
by significant differences in the concentrations of Co, Zn, strontium (Sr), arsenic (As), and Li (analysis of variance 
[ANOVA], p < 0.05 for all).

The most pronounced differences were observed for Co and Zn, which distinctly characterized Cluster 2 
(I EG and II EG). This cluster showed an abnormally high Co concentration (mean = 1.633), whereas Co levels were 
below detection limits in Cluster 6 (K1 diet). Similarly, the Zn concentration in Cluster 2 averaged 457.0 units, 
more than twice that of the control group (mean = 210.8 units). These differences were statistically significant 
(Tukey test, p < 0.01 vs. control).

Cluster 5 (VI EG and IV EG) had the highest Sr content (mean = 31.8 units), which was 1.65× higher than Cluster 
1 (mean = 19.3 units, p = 0.027) and almost twice the control value (mean = 16.6 units). In Cluster 5, the As content 
(average = 0.284 units) also exceeded that of the control group (average = 0.130 units) by more than two-fold.

The Li concentration differed significantly between clusters: Cluster 2 had an average of 0.459 units, more 
than 9 times higher than Cluster 6 (mean = 0.049 units, p < 0.015).

Figure 6: The principal component analysis method for visualizing hierarchical clustering.

Table 6: Splitting food groups into clusters.

Cluster number Diet

1 V, VII, VIII, IX
2 I, II
3 III
4 K2
5 IV, VI
6 K1
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No statistically significant differences were observed between clusters for most other minerals, including 
Na, Mg, Fe, and Cu. The exception was calcium (Ca), for which ANOVA indicated overall significance (p = 0.0479), 
although Tukey’s post hoc test did not identify specific pairwise differences. This pattern may suggest subtle 
variations distributed across multiple clusters that individually do not reach statistical significance.

Key mineral biomarkers defining clusters

Based on the statistical and clustering analyses, Co, Zn, Sr, As, and Li were identified as key biomarkers 
defining the separation of broiler groups by mineral composition. These elements collectively explain the 
physiological divergence observed among the dietary treatments.

Analysis of diet classification results
Model training and hyperparameter optimization

To develop predictive models for determining the type of diet (semi-synthetic or deficient feed) based on 
intestinal-microbiota data, a series of experiments was conducted. The objective was to assess whether machine-
learning algorithms could accurately classify diet type while accounting for additive-based compensation of 
nutrient deficiencies.

Model training included hyperparameter optimization, and the number of principal components used for 
feature-space compression was treated as an additional hyperparameter. The model-performance results are 
summarized in Table 7.

Model performance and comparative evaluation
Error matrices for each optimal model configuration are visualized in Figure 7, corresponding to the best 

combination of algorithm parameters. Among all models tested, the Decision Tree classifier achieved the highest 
prediction accuracy, approximately 74%, outperforming both Logistic Regression and SVM models (bold values 
in Table 7).

This result suggests that the Decision Tree model provided the best balance of interpretability, robustness 
to feature interactions, and sensitivity to microbiota-driven variation in dietary classification. The findings 
demonstrate that microbial composition data can be effectively utilized for predicting diet type, especially when 
supplemented with optimized preprocessing and dimensionality-reduction strategies.

DISCUSSION

General overview of ML applications
The results of this study demonstrate the potential of unsupervised and supervised ML methods in 

analyzing BMC profiles and classifying broiler diet types based on intestinal microbiota data. The combined use 
of synthetic data generation, clustering, correlation analysis, and classification models provided an integrated 
framework for understanding diet–microbiota–mineral interactions in broilers.

Synthetic data generation and evaluation
The generation of additional synthetic data on the BMC and intestinal microbiota of broilers using the CTGAN 

Synthesizer represents a significant step forward in analytical modeling. The synthetic data accurately reflected 
the trends and relationships between the variables (Column Pair Trends Score = 82.45%), and the overall accuracy 
(Overall Score = 76.87%) confirmed that the generated dataset was suitable for training ML models.

It is worth noting that the use of synthetic data has its limitations: While these data show distributions close 
to real ones, they cannot fully reproduce the biological variability inherent in living systems [32]. Consequently, 

Table 7: Results of training classification models based on microbiota data.

No. Model Parameter Accuracy Precision Recall F1‑score

1 Logistic regression “C” = 0.0001, “penalty” = “l2” 0.62 0.58 0.65 0.61
“C”: 1e‑06, “penalty” = “l2,” components=3 0.61 0.56 0.63 0.59

2 SVM “C” = 10000.0, “degree” = 2, “kernel” = “rbf,” 0.58 0.53 0.58 0.55
“C” = 1000.0, “degree” = 2, “kernel” = “rbf,”
components=7

0.61 0.55 0.60 0.57

3 Decision tree “criterion” = “log_loss,” “max_depth” = 5 0.64 0.61 0.66 0.63
“criterion” = “gini,” “max_depth” = 5
components=3

0.74 0.70 0.75 0.72

The most effective metrics of the decision tree model are highlighted in bold and correspond to the selected parameters.
SVM = Support vector machine. 
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synthetic data were used exclusively during the training stage, whereas real data were employed for validation 
and model evaluation. This hybrid strategy ensured both ethical compliance and analytical robustness, reducing 
the need for additional animal experimentation while maintaining data reliability.

Clustering and identification of mineral-based diet groups
Clustering methods, such as HAC, proved effective in identifying six distinct groups of broilers consuming 

different diets (Silhouette Score ≈ 0.524; Calinski–Harabasz Index ≈ 46.937). The semi-synthetic and deficient 
diets formed separate clusters, suggesting that these two dietary regimes significantly affect the mineral status 
of birds. This observation aligns with previous reports emphasizing the critical role of balanced nutrition in 
maintaining micronutrient homeostasis and overall physiological health [33].

Statistical analysis (ANOVA and Tukey test) confirmed that Co, Zn, Sr, As, and Li are key biomarkers 
determining the clustering pattern based on BMC. Among the identified clusters, the largest group 
comprised diets supplemented with UFPs, chitosan dietary fibers, and activated carbon (enterosorbent). 
These supplements regulate intestinal microflora and improve nutrient absorption due to their prebiotic and 
detoxifying properties [34].

The similarity of mineral composition profiles in this group supports the hypothesis that such additives 
can partially compensate for nutrient deficiencies, thereby influencing mineral metabolism and availability. For 
example, in the case of UFP Cu, competition for common transporters of divalent metals (Cu, Zn, Pb, and Cd) 
in the intestine may occur. UFPs can enter intestinal cells without requiring transport proteins, due to their 
high penetrating ability [35]. Hence, transport systems that usually mediate Cu uptake may be repurposed for 
other divalent analogs in the presence of UFPs, whereas they likely perform Cu transport in diets without such 
additives [36].

Figure 7: Error matrices for determining a semi-synthetic microbiota-based diet: (a) Logistic regression, (b) support vector 
machine, and (c) decision tree.

a

b

c
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Role of probiotics and enterosorbents in mineral regulation
Another notable cluster corresponded to diets containing probiotic strains (Bifidobacterium longum 

and Bacillus subtilis), indicating that probiotics play a crucial role in shaping the mineral profile. Probiotic 
supplementation in monogastric diets affects the exchange of chemical elements by modulating bacterial activity 
and selective nutrient losses during enteral homeostasis [37, 38].

These findings are consistent with a study by El-Hack et al. [39] showing that probiotics enhance mineral 
bioavailability by modifying intestinal pH and producing organic acids that increase the solubility and absorption 
of Ca, magnesium, and iron. Similarly, another cluster containing enterosgel and lactulose suggests that 
enterosorbents and prebiotics can influence mineral dynamics by supporting beneficial bacterial populations 
that facilitate mineral absorption [40].

Collectively, these results indicate that feed additives such as probiotics, prebiotics, and enterosorbents 
can be used as complex premixes, combining mineral and biologically active substances to improve broiler 
productivity and gut health. Among these, probiotic strains remain the priority candidates due to their consistent 
effects on microbiota stability and mineral balance.

Predictive modeling of diet classification
The Decision Tree model achieved an accuracy of approximately 74%, demonstrating promising potential 

for classifying diet types based on intestinal microbiota composition. This level of accuracy is particularly 
encouraging considering the high dimensionality and heterogeneity of microbiome data.

ML models applied to microbiota datasets often face challenges due to sparsity and feature redundancy; 
however, the application of dimensionality reduction methods such as PCA improves both interpretability and 
computational efficiency [41]. Similar study by Wang, X. and Liu [42] using tree-based classifiers to predict host 
phenotypes from microbiota data have reported comparable accuracies, further supporting the validity of the 
current approach.

Although the overall accuracy was moderate, it is important to note that the classification task involved 
distinguishing not only between semi-synthetic and deficient diets but also among multiple additive-enriched 
diets, each influencing the microbiota in unique ways. Future improvements could incorporate additional 
biological layers such as gene expression, metabolomic or proteomic data to enhance predictive power and 
biological interpretability [43].

Correlation analysis between microbiota and mineral composition
The correlation analysis between intestinal microbiota taxa and chemical elements in the body’s mineral 

composition provided valuable insight into microbe–mineral interactions. Using the Spearman correlation 
coefficient, which accommodates the non-parametric nature of biological data, both positive and negative 
correlations were identified.

Strong positive correlations were observed for the pairs (Roseburia, Si) (r = 0.82) and (Escherichia/
Shigella, Ca) (r = 0.804), suggesting that these taxa may play significant roles in the metabolism of silicon and 
Ca, respectively. Conversely, strong negative correlations were recorded for (Massiliimalia, Cd) (r = –0.85) and 
(Massiliimalia, Mn) (r = –0.81), indicating potential species-level competition or inhibitory interactions between 
these microbes and metal elements. These results contribute to the growing evidence that specific microbial 
taxa are closely associated with host mineral uptake and regulation.

CONCLUSION

The present study demonstrated the successful integration of ML techniques with biological and mineral 
data to analyze and predict the effects of dietary interventions on broiler health. The combined use of 
unsupervised clustering, supervised classification, and synthetic data generation provided a holistic framework 
for understanding the complex interplay between diet composition, intestinal microbiota, and BMC.

The CTGAN-based synthetic data generation effectively expanded the dataset while maintaining structural 
integrity (Overall Score = 76.87%; Column Pair Trends Score = 82.45%), facilitating ethical and statistically 
balanced modeling. HAC identified six distinct broiler groups (Silhouette Score ≈ 0.524; Calinski–Harabasz 
Index ≈ 46.94), primarily differentiated by Co, Zn, Sr, As, and Li concentrations. These minerals were confirmed 
as key biomarkers governing the mineral-status divergence among dietary regimes. The Decision Tree classifier 
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achieved an accuracy of approximately 74% in predicting diet types based on microbiota composition, validating 
the applicability of ML models to complex biological datasets. Correlation analyses further revealed strong 
associations between taxa such as Roseburia–Si and Escherichia/Shigella–Ca (positive), and Massiliimalia–Cd 
and Massiliimalia–Mn (negative), highlighting microbial–mineral interdependencies.

These findings underscore the feasibility of applying AI-driven analytics in precision poultry nutrition, 
enabling targeted feed optimization, micronutrient balancing, and improved productivity. The clustering-based 
identification of diets containing probiotics, UFPs, and enterosorbents provides empirical support for their 
inclusion as functional additives to enhance mineral bioavailability and gut health.

The study’s main strength lies in its multi-level integration of microbiological, mineral, and computational 
analyses. However, the cross-sectional design and absence of temporal microbiome data limited insights into 
dynamic microbial responses. Future research should integrate longitudinal multi-omics datasets (metagenomics, 
transcriptomics, and metabolomics) to refine predictive accuracy and reveal causal mechanisms in diet–
microbiota–mineral interactions.

This study establishes a novel methodological foundation for data-driven poultry nutrition, demonstrating 
that ML-based modeling can effectively bridge biological complexity and practical feeding strategies, paving the 
way for sustainable, intelligent, and ethically optimized poultry production systems.
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