|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research (Published
online : 01-12-2013)
1. Effect of meloxicam and its combination with
levofloxacin, pazufloxacin, and enrofloxacin on the plasma antioxidative
activity and the body weight of rabbits - Adil Mehraj Khan and
Satyavan Rampal
Veterinary World, 6(12): 950-954
doi:
10.14202/vetworld.2013.950-954
Abstract
Aim: Evaluation of meloxicam,
levofloxacin, pazufloxacin, and enrofloxacin for their effect on
the plasma antioxidative activity (AOA) and the body weight in
rabbits.
Materials and Methods: Thirty two male Soviet Chinchilla
rabbits were divided to eight groups of four rabbits each. Group
A, serving as control, was administered 5 % dextrose. Group B, C,
E and G were gavaged meloxicam, levofloxacin, pazufloxacin and
enrofloxacin, respectively, in 5% dextrose. Levofloxacin and
pazufloxacin were administered at the dose rate of 10 mg/kg body
weight b.i.d 12h, whereas the meloxicam and enrofloxacin were
administered at 0.2mg/kg body weight o.i.d and 20 mg/kg body
weight, respectively. Groups D, F and H were co-gavaged meloxicam
with levofloxacin, pazufloxacin, and enrofloxacin, respectively,
at the above dose rates. All these drugs were administered for 21
consecutive days. The plasma AOA and body weight was determined on
0, 7, 14, and 21 day of treatment.
Results: The plasma AOA of meloxicam treated group was
significantly lower than the control from 7th day of treatment. On
the 14th day of treatment, the levofloxacin treated group had
values significantly higher than the enrofloxacin-meloxicam
co-treated group. Except for the levofloxacin treated group, a
significant decrease in the antioxidative activity was observed in
all treatment groups when compared to the control group on 21st
day of treatment. The body weight of all groups differed
non-significantly throughout the study period.
Conclusion: The results from this study indicate that
although these drugs have no effect on the body weight, a decrease
in the plasma AOA is observed, especially when the duration of
treatment is increased.
Key words: enrofloxacin, levofloxacin, meloxicam,
pazufloxacin, plasma antioxidant activity
References
1. Gunes, V., Cinar, M., Onmaz, A. C., Atalan, G. and Yavuz,
U. (2011) Effects of Meloxicam on oxidative deterioration due
to exercise in horses. Revue. Med. Vet., 162: 258-264. |
|
2. Blondeau, J. M. (1999) Expanded activity and utility of the
new fluoroquinolones: a review. Clin. Ther., 21: 3-40.
http://dx.doi.org/10.1016/S0149-2918(00)88266-1 |
|
3. Martinez, M., McDermott, P. and Walker, R. (2006)
Pharmacology of the fluoroquinolones: a perspective for the
use in domestic animals. Vet. J., 172: 10-28.
http://dx.doi.org/10.1016/j.tvjl.2005.07.010
PMid:16154368 |
|
4. Fernandez, J., Barrett, J. F., Licata, L., Amaratunga, D.
and Frosco, M. (1999) Comparison of efficacies of oral
levofloxacin and oral ciprofloxacin in a rabbit model of a
staphylococcal abscess. Antimicrob. Agents. Chemother., 43(3):
667.
PMid:10049285 PMCid:PMC89178 |
|
5. Zhanel, G. G., Fontaine, S., Adam, H., Schurek, K., Mayer,
M., Noreddin, A. M., Gin, A. S., Rubinstein, E. and Hoban, D.
J. (2006) A review of new fluoroquinolones: focus on their use
in respiratory tract infections. Treat. Respir. Med., 5: 437-
465.
http://dx.doi.org/10.2165/00151829-200605060-00009
PMid:17154673 |
|
6. Vora, A. (2009) Pazufloxacin. J. Assoc. Physicians. India.,
57. |
|
7. Mitchell, M. A. (2006) Enrofloxacin. J. Exot. Pet. Med.,
15(1): 66-69.
http://dx.doi.org/10.1053/j.jepm.2005.11.011 |
|
8. Zhao, B., Chingnell, C. F., Rammal, M., Smith, F.,
Hamilton, M. G., Andley, U. P. and Roberts, J. E. (2010)
Detection and prevention of ocular phototoxicity of
ciprofloxacin and other fluoroquinolone antibiotics. Photochem.
Photobiol., 86(4): 798-805.
http://dx.doi.org/10.1111/j.1751-1097.2010.00755.x
PMid:20528972 PMCid:PMC2910230 |
|
9. Levofloxacin, Wikipedia, http://en.wikipedia.org/wiki/
Levofloxacin (Acessed on 20 September 2013). |
|
10. Schmidt, U. and Schlüter, G. (1996) Studies on the
mechanism of phototoxicity of Bay y3118 and other quinolones.
Adv. Exp. Med. Biol., 387: 117-120.
http://dx.doi.org/10.1007/978-1-4757-9480-9_16
PMid:8794202 |
|
11. Thuong-Guyot, M., Domale, O., Pocidalo, J. J. and Hayem,
G. (1994) Effects of flouroquinolones on cultured articular
condrocytes flow cytometric analysis of free radical
production. J. Pharmacol. Exp. Ther., 271: 1544-1549.
PMid:7996468 |
|
12. Yazar, E. and Tras, B. (2001) Effects of fluoroquinolone
antibiotics on hepatic superoxide dismutase and glutathione
peroxidase activities in healthy and experimentally induced
peritonitis mice. Revue. Med. Vet., 152(3): 235-238. |
|
13. Ozgocmen, S., Ardicoglu, O., Erdogan, H., Fadillioglu, E.
and Gudul, H. (2005) In vivo effect of celecoxib and tenoxicam
on oxidant/anti-oxidant status of patients with knee
osteoarthritis. Ann. Clin. Lab. Sci., 35: 137-143.
PMid:15943176 |
|
14. Edfawy, M., Hassan, M. H., Mansour, A., Hamed, A. A. and
Amin, H. A. (2012) Meloxicam modulates oxidative stress
status, inhibits prostaglandin E2, and abrogates apoptosis in
carbon tetrachloride-induced rat hepatic injury. Int. J.
Toxicol., 31(3): 276-286.
http://dx.doi.org/10.1177/1091581812442939
PMid:22556387 |
|
15. Burak Cimen, M. Y., Cimen, O. B., Eskandari, G., Sahin,
G., Erdogan, C. and Atik, U. (2003) In vivo effects of
meloxicam, celecoxib, and ibuprofen on free radical metabolism
in human erythrocytes. Drug. Chem. Toxicol., 26(3): 169-176.
http://dx.doi.org/10.1081/DCT-120022645
PMid:12953657 |
|
16. Villegas, I., Martin, M. J., La Casa, C., Motilva, V. and
De La Lastra, C. A. (2002) Effects of oxicam inhibitors of
cyclooxygenase on oxidative stress generation in rat gastric
mucosa. a comparative study. Free. Radic. Res., 36(7): 769-
777.
http://dx.doi.org/10.1080/10715760290032575
PMid:12180128 |
|
17. Li, H., Hortmann, M., Daiber, A., Oelze, M., Ostad, M. A.,
Schwarz, P. M., Xu, H., Xia, N., Kleschyov, A. L., Mang, C.,
Warnholtz, A., Munzel, T. and Forstermann, U. (2008)
Cyclooxygenase 2-selective and nonselective nonsteroidal
anti-inflammatory drugs induce oxidative stress by up-
regulating vascular NADPH oxidases. J. Pharmacol. Exp. Ther.,
326(3): 745-753.
http://dx.doi.org/10.1124/jpet.108.139030
PMid:18550689 |
|
18. Suresh, D. R., Annam, V., Pratibha, K. and Prasad, B. V.
(2009) Total antioxidant capacity–a novel early bio- chemical
marker of oxidative stress in HIV infected individuals. J.
Biomed. Sci., 16: 61.
http://dx.doi.org/10.1186/1423-0127-16-61
PMid:19583866 PMCid:PMC2714592 |
|
19. Nagy, G., Ward, J., Mosser, D. D., Koncz, A., Gergely, P.
Jr., Stancato, C., Qian, Y., Fernandez, D., Niland, B.,
Grossman, C. E., Telarico, T., Banki, K. and Perl, A. (2006)
Regulation of CD4 expression via recycling by HRES-1/RAB4
controls susceptibility to HIV infection. J. Biol. Chem.,
281(45): 34574-34591.
http://dx.doi.org/10.1074/jbc.M606301200
PMid:16935861 |
|
20. Motoyama, T., Okamoto, K., Kukita, I., Hamaguchi, M.,
Kinoshita, Y. and Ogawa, H. (2003) Possible role of increased
oxidant stress in multiple. Care. Med., 31: 1048- 1052. |
|
21. Lipsky, B. A., Byren, I. and Hoey, C. T. (2010) Treatment
of Bacterial Prostatitis. Clin. Infect. Dis., 50(12):
1641-1652.
http://dx.doi.org/10.1086/652861
PMid:20459324 |
|
22. Wagenlehner, F. M. E. and Krieger, J. N. (2011) Treatment
of chronic bacterial prostatitis. Pelviperineol., 30: 17-26. |
|
23. Gadde, K. M., Franciscy, D. M., Wagner, H. R. and
Krishnan, K. R. (2003) Zonisamide for weight loss in obese
adults: a randomized controlled trial. J. Am. Med. Assoc.,
289(14): 1820-1825.
http://dx.doi.org/10.1001/jama.289.14.1820
PMid:12684361 |
|
24. Sicras-Mainar, A., Navarro-Artieda, R., Rejas-Gutiérrez,
J. and Blanca-Tamayo M. (2008) Relationship between obesity
and antipsychotic drug use in the adult population: A
longitudinal, retrospective claim database study in Primary
Care settings. Neuropsychiatr. Dis. Treat., 4(1): 219-226. 25.
Croisier, D., Chavanet, P., Lequeu, C., Ahanou, A., Nierlich,
A., Neuwirth, C., Piroth L., Duong, M., Buisson, M. and
Portier, H. (2002) Efficacy and pharmacodynamics of simulated
human-like treatment with levofloxacin on experimental
pneumonia induced with penicillin-resistant pneumococci with
various susceptibilities to fluoroquino- lones. J. Antimicrob.
Chemother., 50(3): 349-360. |
|
26. Mayer, J. (2007) Analgesia and anesthesia in rabbits and
rodents. Proceedings: Western Veterinary Conference. |
|
27. Adamcak, A. and Otten, B. (2000) Rodent Therapeutics. Vet.
Clin. N.Am: Exotic. Anim. Pract. 3: 221-240.
PMid:11228829 |
|
28. Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic,
S. and Cosic, V. (2001) Method for the measurement of
antioxidant activity in human fluids. J. Clin. Pathol., 54:
356-361.
http://dx.doi.org/10.1136/jcp.54.5.356
PMid:11328833 PMCid:PMC1731414 |
|
29. Duncan, D. B. (1995) Multiple range and multiple F-tests.
Biometrics., 11: 1-14.
http://dx.doi.org/10.2307/3001478 |
|
30. Rampal, S., Kaur, R., Sethi, R., Singh, O. and Sood, N.
(2008) Ofloxacin-associated retinopathy in rabbits: role of
oxidative stress. Human. Exp. Toxicol., 27: 409-415.
http://dx.doi.org/10.1177/0960327108092295
PMid:18715887 |
|
31. Li, Q., Peng, S., Sheng, Z. and Wang, Y. (2010) Ofloxacin
induces oxidative damage to joint chondrocytes of juvenile
rabbits: excessive production of reactive oxygen species,
lipid peroxidation and DNA damage. Eur. J. Pharmacol.,
25:626(2-3): 146-153. |
|
32. Talla, V. and Veerareddy, P. R. (2011) Oxidative stress
induced by fluoroquinolones on treatment for complicated
urinary tract infections in Indian patients. J. Young. Pharm.,
3: 304-309.
http://dx.doi.org/10.4103/0975-1483.90242
PMid:22224037 PMCid:PMC3249743 |
|
33. Arafa, N. M., Abdel-Rahman, M., El-khadragy, M. F. and
Kassab, R. B. (2013) Evaluation of the possible epilepto-
genic activity of ciprofloxacin: the role of Nigella sativa on
amino acids neurotransmitters. Neurochem. Res., 38(1): 174-
185.
http://dx.doi.org/10.1007/s11064-012-0905-z
PMid:23086472 |
|
34. Araniciu, C., Parvu, A. E., Tiperciuc, B., Palage, M.,
Oniga, S., Verite P. and Oniga, O. (2013) Synthesis and
evaluation of the anti-inflammatory activity of some
2-(trimetho- xyphenyl)-4-r1-5-r2-thiazoles. Dig. J. Nanomatr.
Bios., 8(2): 699-709. |
|
35. Kovacic, P, Pozos, R. S., Somanathan, R., Shangari, N. and
O'Brien, P. J. (2005) Mechanism of mitochondrial uncouplers,
inhibitors, and toxins: Focus on electron transfer, free
radicals, and structure–activity relationships. Curr. Med.
Chem., 12: 2601-2623.
http://dx.doi.org/10.2174/092986705774370646
PMid:16248817 |
|
36. Valko, M., Leibfritz, D., Moncola. J., Cronin, M. T. D.,
Mazura, M. and Telser, J. (2007) Free radicals and
antioxidants in normal physiological functions and human
disease. Int. J. Biochem. Cell. Biol., 39: 44-84.
http://dx.doi.org/10.1016/j.biocel.2006.07.001
PMid:16978905 |
|
37. Berzosa, C., Cebrian, I., Fuentes-Broto, L., Gomez-Trullen,
E., Piedrafita, E., Martinez-Ballarin, E., Lopez-Pingarron,
L., Reiter, R. J. and Garcia, J. J. (2011) Acute exercise
increases plasma total antioxidant status and antioxidant
enzyme activities in untrained men. J. Biomed. Biotechnol.,
540458.
PMid:21436993 PMCid:PMC3062968 |
|
38. Kaur, S., Verma, I., Narang, A. P. S., Chinna, R. S.,
Singh, P. and Aggarwal, S. P. (2011) Assessment of total
antioxidant status in acute pancreatitis and prognostic
significance. Int. J. Biol. Med. Res., 2(2): 575-576. |
|
39. Ghiselli, A., Serafini, M., Natella, F. and Scaccini, C.
(2000) Total antioxidant capacity as a tool to assess redox
status: critical view and experimental data. Free. Radic.
Biol. Med., 29(11): 1106-1114.
http://dx.doi.org/10.1016/S0891-5849(00)00394-4 |
|
40. Ristow, M. and Schmeisser, S. (2011) Extending life span
by increasing oxidative stress. Free. Rad. Biol. Med., 51:
327- 336.
http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.010
PMid:21619928 |
|
41. Mytilineou, C., Kramer, B. C. and Yabut, J. A. (2002)
Glutathione depletion and oxidative stress. Parkinsonism.
Relat. Disord., 8: 385-387.
http://dx.doi.org/10.1016/S1353-8020(02)00018-4 |
|
42. Dubey, N., Khan, A.M. and Raina, R. (2013) Sub-acute
deltamethrin and fluoride toxicity induced hepatic oxidative
stress and biochemical alterations in rats. Bull. Environ.
Contam. Toxicol., 91: 334-338.
http://dx.doi.org/10.1007/s00128-013-1052-1
PMid:23820696 |
|
43. Khan, A. M., Dubey, N., Raina, R., Singh, G. and Beigh, S.
A. (2013) Toxic effects of deltamethrin and fluoride on
hematological parameters in rats. Fluoride., 46(1): 34-38. |
|
44. Khan, A. M., Sultana, M., Raina, R., Dubey, N. and Dar, S.
A. (2013) Effect of sub-acute toxicity of bifenthrin on
antioxidant status and hematology after its oral exposure in
goats. Proc. Natl. Acad. Sci. India. Sect B. Biol. Sci.,
83(4): 545-549.
http://dx.doi.org/10.1007/s40011-013-0157-y |
|
45. Dar, M. A., Khan, A. M., Raina, R., Verma, P. K. and
Sultana, M. (2013) Effect of repeated oral administration of
bifenthrin on lipid peroxidation and anti-oxidant parameters
in Wistar rats. Bull. Environ. Contam. Toxicol., 91: 125-128.
http://dx.doi.org/10.1007/s00128-013-1022-7
PMid:23728353 |
|
|