|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Review
(Published
online: 20-12-2013)
10. Impact of heat stress on rumen functions
- Brijesh Yadav, Gynendra Singh, A. K. Verma, N. Dutta and V. Sejian
Veterinary World, 6(12): 992-996
doi:
10.14202/vetworld.2013.992-996
Abstract
The livestock sector is evolving in
response to rapidly increasing demand for livestock products.
Ruminant population is the main driver of the growth of the
livestock sector besides pig and poultry. The rise in environment
temperature due to climate change alters the basic physiology of
rumen which negatively affects production. Dry matter intake
begins to decline in an adaptive response to heat stress.
Increased environmental temperature reduces the gut motility,
rumination, ruminal contractions and depresses appetite in
ruminants. Heat stress reduces the total production of volatile
fatty acid (VFA) with individual variation and also results in
changes in ruminal pH. Passage rate and retention time of digesta
is also influenced by rise in ambient temperature and thus affects
digestibility. The change in microbiota due to heat stress may
change the fermentation pattern in the rumen resulting in
variation in digestibility, VFA production and also methane
emission.
Keywords: heat stress, ruminants, digestibility, methane
emission
References
1. Thornton, P. K. (2010) Livestock production: recent trends,
future prospects. Philos. Trans. R. Soc. Lond., B. 365(1554):
2853-2867.
http://dx.doi.org/10.1098/rstb.2010.0134
PMid:20713389 PMCid:PMC2935116 |
|
2. Delgado, C.L. (2003) Rising consumption of meat and milk in
developing countries has created a new food revolution. J.
Nutr. 133: 3907S-3910S (Supplement 2 on Animal Source Foods). |
|
3. FAOSTAT. Agricultural production database. Food and
Agricultural Organization. http://faostat.fao.org/site/339/
default.aspx Accessed on August 8, 2013. |
|
4. Lonergan, S. (1998) Climate warming and India. In: Dinar,
A. et al (eds) Measuring the Impact of Climate Change on
Indian Agriculture. World Bank Technical Paper No. 402,
Washington DC, pp 33–67. |
|
5. Gaughan, J.B., Mader, T.L., Holt, S.M., Sullivan, M.L. and
Hahn, G.L. (2009) Assessing the heat tolerance of 17 beef
cattle genotypes. Int. J. Biometeorol. 54: 617–627.
http://dx.doi.org/10.1007/s00484-009-0233-4
PMid:19458966 |
|
6. Baumgard, L.H. and Rhoads, R.P. (2012) Ruminant Nutrition
Symposium: ruminant production and metabolic responses to heat
stress. J. Anim. Sci. 90(6): 1855-1865.
http://dx.doi.org/10.2527/jas.2011-4675
PMid:22205665 |
|
7. National Research Council. (1989) Nutrient Requirements of
Dairy Cattle (6th Revised Edition Update). National Academy
Press, Washington, DC. |
|
8. Rhoads, R.P., Baumgard, L.H., Suagee, J.K., & Sanders, S.R.
(2013) Nutritional Interventions to Alleviate the Negative
Consequences of Heat Stress. Adv.Nutr. 4(3): 267-276.
http://dx.doi.org/10.3945/an.112.003376
PMid:23674792 |
|
9. Wheelock, J.B., Rhoads, R.P., VanBaale, M.J., Sanders, S.R.
and Baumgard, L.H. (2010) Effects of heat stress on energetic
metabolism in lactating Holstein cows. J. Dairy Sci. 93:
644–655.
http://dx.doi.org/10.3168/jds.2009-2295
PMid:20105536 |
|
10. Albright, J.L. and Alliston, C.W. (1972) Effects of
varying the environment upon performance of dairy cattle. J.
Anim. Sci. 32: 566–577. |
|
11. Rhoads, M.L., Rhoads, R.P., VanBaale, M.J., Collier, R.J.,
Sanders, S.R., Weber, W.J., Crooker, B.A. and Baumgard, L.H.
(2009) Effects of heat stress and plane of nutrition on
lactating Holstein cows: I. Production, metabolism, and
aspects of circulating somatotropin. J. Dairy Sci. 9(5):986-
997. |
|
12. Smith, D.L., Smith, T., Rude, B.J. and Ward, S.H. (2013)
Comparison of the effects of heat stress on milk and component
yields and somatic cell score in Holstein and Jersey cows. J.
Dairy Sci. 96(5): 3028-3033.
http://dx.doi.org/10.3168/jds.2012-5737
PMid:23498016 |
|
13. Nonaka, I., Takusari, N., Tajima, K., Suzuki Higuchi, T.
and Kurihara, K.M. (2008) Effects of high environmental
temperatures on physiological and nutritional status of
prepubertal Holstein heifers. Livest. Sci. 113: 14–23.
http://dx.doi.org/10.1016/j.livsci.2007.02.010 |
|
14. Pereira, A.M.F., Baccari Jr. F., Titto, E.A.L. and
Almeida, J.A.A. (2008) Effect of thermal stress on
physiological parameters, feed intake and plasma thyroid
hormones concentration in Alentejana, Mertolenga, Frisian and
Limousine cattle breeds. Int. J. Biometeorol. 52: 199–208.
http://dx.doi.org/10.1007/s00484-007-0111-x
PMid:17578605 |
|
15. Yadav, B., Singh, G., Wankar, A., Dutta, N., Verma, A.K.
and Chaturvedi, V.B. (2012a) Effect of heat stress on
digestibility in crossbred cattle. VIIIth Biennial Conference
of ANAC and symposium on Animal Nutrition Research Strategies
for Food Security. pp 138. |
|
16. Hall, M. B. (2009) Heat Stress Alters Ruminal Fermentation
and Digesta Characteristics, and Behavior in Lactating Dairy
Cattle. In Proceeding of 11th International Symoosium on
Ruminant Physiology, Y. Chilliard, F. Glasser, Y. Faulconnier,
F. Bocquier, I. Veissier, and M. Doreau, ed. Wageningen
Academic Publ., Wageningen, the Netherlands pp. 204. |
|
17. Hamzaoui, S., Salama, A.A.K., Albanell, E., Such, X. and
Caja, G. (2013) Physiological responses and lactational
performances of late-lactation dairy goats under heat stress
conditions. J. Dairy Sci. 96(10): 6355-6365.
http://dx.doi.org/10.3168/jds.2013-6665 |
|
18. Chaiyabutr, N., Chanpongsang, S. and Suadsong, S. (2008)
Effects of evaporative cooling on the regulation of body water
and milk production in crossbred Holstein cattle in a tropical
environment. Int. J. Biometeorol. 52: 575–585.
http://dx.doi.org/10.1007/s00484-008-0151-x
PMid:18427839 |
|
19. Korde, J.P., Jadhao, S.V., Varshney, V.P., Singh, G and
Shukla, D.C. (2006) Longterm effects of heat exposure on
nutrient digestibility and digesta flow rate in buffalo
calves. Buffalo Bulletin 22(1): 25-32. |
|
20. Sejian, V., Valtorta, S., Gallardo, M. and Singh, A. K.
(2012) Ameliorative Measures to Counteract Environmental
Stresses. In Environmental Stress and Amelioration in
Livestock Production. Springer Berlin Heidelberg. pp. 153-180. |
|
21. Soriani, N., Panella, G. and Calamari, L. (2013)
Rumination time during the summer season and its relationships
with metabolic conditions and milk production. J. Dairy Sci.
96(8): 5082-5094.
http://dx.doi.org/10.3168/jds.2013-6620
PMid:23791488 |
|
22. Dikmen, S., Ustuner, H. and Orman, A. (2012) The effect of
body weight on some welfare indicators in feedlot cattle in a
hot environment. Int. J. Biometeorol. 56(2): 297-303.
http://dx.doi.org/10.1007/s00484-011-0433-6
PMid:21533672 |
|
23. Baile, C.A. and Forbes, J.M. (1974) Control of feed intake
and regulation of energy balance in ruminants. Physiol. Rev.
54: 160.
PMid:4594031 |
|
24. Aganga, A.H., Umna, N.N., Oyendipe, E.O., Okoh, P.N. and
Aduku, A.O. (1990) Response to water deprivation by Yankasa
ewes under different physiological states. Small Rumin. Res.
3: 109–115.
http://dx.doi.org/10.1016/0921-4488(90)90086-L |
|
25. Silanikove, N. (1985) Effect of dehydration on feed intake
and dry matter digestibility in desert (black Bedouin) and
non-desert (Swiss Saanen) goats fed on lucerne hay. Comp.
Biochem. Physiol. 80A: 449–452.
http://dx.doi.org/10.1016/0300-9629(85)90066-0 |
|
26. Marai, I.F.M. and Haeeb, A.A.M. (2010) Buffalo's
biological functions as affected by heat stress-A review.
Livest. Sci. 127(2): 89-109.
http://dx.doi.org/10.1016/j.livsci.2009.08.001 |
|
27. Mishra, M., Martz, F.A., Stanley, R.W., Johnson, H.D.,
Campbell, J.R., Hildebrand. E. (1970) Effect of diet and
ambient temperature–humidity and ruminal pH, oxidation
–reduction potential, ammonia and lactic acid in lactating
cows. J. Anim. Sci. 31: 1023–1028. |
|
28. Grovum, W.L. (1981) Factors affecting the voluntary intake
of food by sheep. 3. The effect of intravenous infusions of
gastrin, cholecystokinin and secretin on motility of the
reticulo-rumen intake. Br. J. Nutr. 45: 183–201.
http://dx.doi.org/10.1079/BJN19810091
PMid:7470434 |
|
29. Bloom, S. R. (1978) Gut hormones. Proc. Nutr. Soc. 37:
259–271.
http://dx.doi.org/10.1079/PNS19780037
PMid:733764 |
|
30. Kelly, R.O., Martz, F.A. and Johnson, H.D. (1967) Effect
of environmental temperature on ruminal VFA levels with
controlled feed intake. J. Dairy Sci. 50: 531–533.
http://dx.doi.org/10.3168/jds.S0022-0302(67)87460-5 |
|
31. Tajima, K., Nonaka, I., Higuchi, K., Takusari, N.,
Kurihara, M., Takenaka, A. and Aminov, R.I. (2007) Influence
of high temperature and humidity on rumen bacterial diversity
in Holstein heifers. Anaerobe 13(2): 57-64.
http://dx.doi.org/10.1016/j.anaerobe.2006.12.001
PMid:17317231 |
|
32. Salles, M.S.V., Zanetti, M.A., Salles, F.A., Titto, E.A.L.
and Conti, R.M.C. (2010) Changes in ruminal fermentation and
mineral serum level in animals kept in high temperature
environments. Revista Brasileira de Zootecnia, 39(4): 883-890.
http://dx.doi.org/10.1590/S1516-35982010000400025 |
|
33. King, C.C., Dschaak, C.M., Eun, J.S., Fellner, V. and
Young, A.J. (2011) Quantitative analysis of microbial
fermentation under normal or high ruminal temperature in
continuous cultures. The Professional Animal Scientist 27(4):
319-327. |
|
34. Uyeno, Y., Sekiguchi, Y., Tajima, K., Takenaka, A.,
Kurihara, M. and Kamagata, Y. (2010) An rRNA-based analysis
for evaluating the effect of heat stress on the rumen
microbial composition of Holstein heifers. Anaerobe 16(1):
27-33.
http://dx.doi.org/10.1016/j.anaerobe.2009.04.006
PMid:19446029 |
|
35. Christopherson, R.J. (1985) The thermal environment and
the ruminant digestive system. In: Yousef, M.K. (Ed.), Stress
Physiology in Livestock. CRC Press, Boca Raton, Florida, pp.
163–180. |
|
36. National Research Council. (1981) Effects of environment
on nutrient requirements of domestic animals. National
Academies Press, Washington, DC. |
|
37. Weniger, J.H. and Stein, M. (1992) Einfluss von Ungebun-
gstemperatur und Luftfeuchte auf die Nahrstoffverdaulichkeit
beim Schaf. 1. Problemstellung, Durchfuhrung der
Untersuchungen, Verdaulichkeit. Zuchtungs-kunde 64: 148 –155. |
|
38. Mathers, J.C., Baber, R.P., Archibald, R.F., (1989)
Intake, digestion and gastro-intestinal mean retention time in
Asiatic Buffaloes and Ayrshire cattle given two contrasting
diets and housed at 20 °C and 33 °C. J. Agric. Sci. 113:
211–222.
http://dx.doi.org/10.1017/S0021859600086792 |
|
39. McDowell, R.E., Moody, E.G., Van Soest, P.J. and Lehmann,
R.P. (1969) Effect of heat stress on energy and water
utilization of lactating cows. J. Dairy Sci. 52: 188–194.
http://dx.doi.org/10.3168/jds.S0022-0302(69)86528-8 |
|
40. Christopherson, R.J. and Kennedy, P.M. (1983) Effect of
the thermal environment on digestion in ruminants. Can. J.
Anim. Sci. 63: 477–496.
http://dx.doi.org/10.4141/cjas83-058 |
|
41. Korde, J.P., Singh, G., Varshney, V.P. and Shukla, D.C.
(2007) Effects of Long-term Heat Exposure on Adaptive
Mechanism of Blood Acid-base in Buffalo Calves. Asian- Aust.
J. Anim. Sci. 13: 329–332. |
|
42. Bernabucci, U. (2011) Impact of Hot Environment on
Nutrient Requirements. Environmental Physiology of Livestock,
101-128. |
|
43. Nonaka, I., Takusari, N., Higuchi, K., Enishi, O. and
Kurihara, M. (2012) Effects of a Hot and Humid Environment on
the Performance of Holstein Heifers. Jpn. Agric. Res. Q.
46(3): 221-226.
http://dx.doi.org/10.6090/jarq.46.221 |
|
44. Bernabucci, U., Bani, P., Ronchi, B., Lacetera, N. and
Nardone, A. (1999) Influence of short and long-term exposure
to hot environment on rumen passage rate and diet
digestibility by Friesian heifers. J. Dairy Sci. 82: 967–973.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75316-6 |
|
45. Lu, C.D. (1989) Effect of heat stress on goat production.
Small Rumin. Res. 2: 151–162.
http://dx.doi.org/10.1016/0921-4488(89)90040-0 |
|
46. McDowell, R.E., Hooven, N.W. and Camoens J.K. (1976)
Effects of climate on performance of Holsteins in first
lactation. J. Dairy Sci. 59: 965–973.
http://dx.doi.org/10.3168/jds.S0022-0302(76)84305-6 |
|
47. Bernabucci, U., Lacetera, N., Danieli, P.P., Bani, P.,
Nardone, A. and Ronchi, B. (2009) Influence of different
periods of exposure to hot environment on rumen function and
diet digestibility in sheep. Int. J. Biometeorol. 53: 387–395.
http://dx.doi.org/10.1007/s00484-009-0223-6
PMid:19370363 |
|
48. Liu, Y. and Whitman, W.B. (2008) Metabolic, phylogenetic,
and ecological diversity of the methanogenic archaea. Annals
New York Acad. Sci. 1125: 171–189.
http://dx.doi.org/10.1196/annals.1419.019
PMid:18378594 |
|
49. Johnson, K.A. and Johnson, D.E. (1995) Methane emissions
from cattle. J. Anim. Sci. 73: 2483–2492.
PMid:8567486 |
|
50. Monteny, G.J., Groenestein, C.M. and Hilhorst, M.A. (2001)
Interactions and coupling between emissions of methane and
nitrous oxide from animal husbandry. Nutr. Cycl. Agroecosys.
60(1/3): 123-132.
http://dx.doi.org/10.1023/A:1012602911339 |
|
51. Monteny, G.J., Bannink, A. and Chadwick, D. (2006)
Greenhouse gas abatement strategies for animal husbandry.
Agric. Ecosyst. Environ. 112(2-3): 163-170.
http://dx.doi.org/10.1016/j.agee.2005.08.015 |
|
52. Shibata, M. and Terada, F. (2010) Factors affecting
methane production and mitigation in ruminants. Anim. Sci. J.
81(1): 2-10.
http://dx.doi.org/10.1111/j.1740-0929.2009.00687.x
PMid:20163666 |
|
53. Morvay, Y., Bannink, A., France, J., Kebreab, E. and
Dijkstra, J. (2011) Evaluation of models to predict the
stoichiometry of volatile fatty acid profiles in rumen fluid
of lactating Holstein cows. J. Dairy Sci. 94(6): 3063-3080.
http://dx.doi.org/10.3168/jds.2010-3995
PMid:21605776 |
|
54. Dijkstra, J., Ellis, J.L., Kebreab, E., Strathe, A.B.,
López, S., France, J. and Bannink, A. (2012) Ruminal pH
regulation and nutritional consequences of low pH. Anim. Feed
Sci. Tech. 172(1): 22-33.
http://dx.doi.org/10.1016/j.anifeedsci.2011.12.005 |
|
55. Ngwabie, N.M., Jeppsson, K.H., Gustafsson, G. and
Nimmermark, S. (2011) Effects of animal activity and air
temperature on methane and ammonia emissions from a naturally
ventilated building for dairy cows. Atmos. Environ. 45(37):
6760-6768.
http://dx.doi.org/10.1016/j.atmosenv.2011.08.027 |
|
56. Ramin, M. and Huhtanen, P. (2012) Development of non-
linear models for predicting enteric methane production. Acta.
Agric. Scand. A. 62(4): 254-258.
http://dx.doi.org/10.1080/09064702.2013.765908 |
|
57. Hippenstiel, F., Pries, M., Büscher, W. and Südekum, K.H.
(2013) Comparative evaluation of equations predicting methane
production of dairy cattle from feed characteristics. Arch.
Anim. Nutr. 67(4): 279-288.
http://dx.doi.org/10.1080/1745039X.2013.793047
PMid:23678954 |
|
58. Yadav, B., Singh, G., Wankar, A., Dutta, N., Verma, A.K.
and Chaturvedi, V.B. (2012b). Effect of thermal stress on
Methane emission in crossbred cattle. VIIIth Biennial
Conference of ANAC and symposium on Animal Nutrition Research
Strategies for Food Security. pp 144. |
|
|