|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research (Published
online : 29-10-2013)
19. Detection and differentiation of sheeppox virus and
goatpox virus from clinical samples using 30 kDa RNA polymerase subunit (RPO30)
gene based PCR - R. Santhamani, R. Yogisharadhya, G. Venkatesan, S.
B. Shivachandra, A. B. Pandey and M. A. Ramakrishnan
Veterinary World, 6(11): 923-925
doi:
10.14202/vetworld.2013.923-925
Abstract
Aim: To detect and
differentiate Capripox virus (sheeppox virus and goatpox virus)
infections by using 30 kDa RNA polymerase subunit (RPO30) gene
based PCR.
Materials and Methods: Two capripox viruses' viz., sheep
pox virus (SPPV) and goatpox virus (GTPV) from clinical samples of
different outbreaks were detected and differentiated using capri
pox virus (CaPVs) genotyping PCR targeting the CaPV RPO30 gene. By
using the above PCR assay, a total of 54 scab samples from pox
disease outbreaks occurred in goats (n=21) and sheep (n=33) were
screened.
Results: Out of 54 clinical samples, 43 [17 out of 21
(80.95%) goat scabs and 26 out of 33 sheep (78.78%)] were found
positive for capripox virus infection. All positive samples
yielded expected amplicon sizes of 172 bp for goatpox virus and
152 bp for sheep pox virus.
Conclusion: The current study demonstrated that RPO30 gene
based PCR assay could be used for molecular epidemiology of
capripox virus infection and differentiation of causative agent
viz., sheep pox virus and goatpox virus.
Key words: capripox virus, differentiation PCR, goat pox,
RPO30 gene, sheeppox
References
1. Babiuk, S., Bowden, T. R., Boyle, D.B., Wallace, D. B.,
Kitching, R. P. (2008) Capripoxviruses: an emerging world wide
threat to sheep, goats a.nd cattle. Transbound. Emerg. Dis.
55: 263–272.
http://dx.doi.org/10.1111/j.1865-1682.2008.01043.x
PMid:18774991 |
|
2. International Office of Epizootics. Biological Standards
Commission, International Office of Epizootics. Inter-
national Committee (2008) Manual of diagnostic tests and
vaccines for terrestrial animals?: mammals, birds, and bees.
Office international des épizooties, Paris. |
|
3. Carn, V. M. (1993) Control of capripoxvirus infections.
Vaccine 11:1275–1279.
http://dx.doi.org/10.1016/0264-410X(93)90094-E |
|
4. Bhanuprakash, V., Indrani, B.K., Hosamani, M. and Singh,
R.K. (2006) The current status of sheep pox disease. Comp.
Immunol. Microbiol. Infect. Dis. 29:27–60.
http://dx.doi.org/10.1016/j.cimid.2005.12.001
PMid:16458357 |
|
5. Mondal, B., Hosamani, M., Dutta, T.K., Senthilkumar, V.S.,
Rathore, R. and Singh, R.K. (2004) An outbreak of sheep pox on
a sheep breeding farm in Jammu, India. Sci. Tech. Rev. 23:
943–949. |
|
6. Verma, S., Verma, L.K., Gupta, V.K., Katoch, V.C., Dogra,
V., Pal, B. and Sharma, M. (2011) Emerging Capripoxvirus
disease outbreaks in Himachal Pradesh, a northern state of
India. Transbound. Emerg. Dis. 58:79–85.
http://dx.doi.org/10.1111/j.1865-1682.2010.01172.x
PMid:21214867 |
|
7. Bhanuprakash, V., Venkatesan, G., Balamurugan, V., Hosamani,
M., Yogisharadhya, R., Chauhan, R.S., Pande, A., Mondal, B.
and Singh, R.K. (2010) Pox outbreaks in sheep and goats at
Makhdoom (Uttar Pradesh), India: evidence of sheeppox virus
infection in goats. Transbound. Emerg. Dis. 57: 375–382.
http://dx.doi.org/10.1111/j.1865-1682.2010.01158.x
PMid:20673232 |
|
8. Hosamani, M., Nandi, S., Mondal, B., Singh, R.K., Rasool,
T.J. and Bandyopadhyay, S.K. (2004) A Vero cell-attenuated
Goatpox virus provides protection against virulent virus
challenge. Acta Virol 48:15–21.
PMid:15230470 |
|
9. Yogisharadhya, R., Bhanuprakash, V., Hosamani, M.,
Venkatesan, G., Balamurugan, V., Bora, D.P., Bhanot, V.,
Prabhu, M. and Singh, R.K. (2011) Comparative efficacy of live
replicating sheeppox vaccine strains in Ovines. Biologicals
39:417–423.
http://dx.doi.org/10.1016/j.biologicals.2011.09.010
PMid:21993305 |
|
10. Balinsky, C.A, Delhon, G., Smoliga, G., Prarat, M.,
French, R.A., Geary, S.J., Rock, D.L. and Rodriguez, L.L.
(2008) Rapid preclinical detection of sheeppox virus by a
real-time PCR assay. J. Clin. Microbiol. 46:438–442.
http://dx.doi.org/10.1128/JCM.01953-07
PMid:18032617 PMCid:PMC2238129 |
|
11. Hosamani, M., Mondal, B., Tembhurne, P.A., Bandyo- padhyay,
S.K., Singh, R.K. and Rasool, T.J. (2004) Differen- tiation of
sheep pox and goat poxviruses by sequence analysis and
PCR-RFLP of P32 gene. Virus Genes 29:73–80.
http://dx.doi.org/10.1023/B:VIRU.0000032790.16751.13
PMid:15215685 |
|
12. Lamien, C.E., Le Goff, C., Silber, R. (2011) Use of the
Capripoxvirus homologue of Vaccinia virus 30 kDa RNA
polymerase subunit (RPO30) gene as a novel diagnostic and
genotyping target: development of a classical PCR method to
differentiate Goat poxvirus from Sheep poxvirus. Vet.
Microbiol. 149:30–39.
http://dx.doi.org/10.1016/j.vetmic.2010.09.038
PMid:21115310 |
|
13. Lamien, C.E., Lelenta, M., Goger, W., Silber, R.,
Tuppurainen, E., Matijevic, M., Luckins, A.G. and Diallo, A.
(2011) Real time PCR method for simultaneous detection,
quantitation and differentiation of capripoxviruses. J. Virol.
Meth. 171: 134- 140.
http://dx.doi.org/10.1016/j.jviromet.2010.10.014
PMid:21029751 |
|
14. Yousif, A.A., Al-Naeem, A.A., Al-Ali, M.A. (2010) Rapid
non-enzymatic extraction method for isolating PCR-quality
camelpox virus DNA from skin. J. Virol. Meth. 169: 138-142.
http://dx.doi.org/10.1016/j.jviromet.2010.07.013
PMid:20654652 |
|
15. Beard, P.M., Sugar, S., Bazarragchaa, E., Gerelmaa, U.,
Tserendorj, S., Tuppurainen, E. and Sodnomdarjaa, R. (2010) A
description of two outbreaks of capripoxvirus disease in
Mongolia. Vet. Microbiol. 142:427–431.
http://dx.doi.org/10.1016/j.vetmic.2009.10.018
PMid:19939588 PMCid:PMC2866252 |
|
16. Ireland, D.C. and Binepal, Y.S. (1998) Improved detection
of capripoxvirus in biopsy samples by PCR. J. Virol. Meth.
74:1–7.
http://dx.doi.org/10.1016/S0166-0934(98)00035-4 |
|
17. Yan, X-M., Chu, Y-F., Wu, G-H., Zhao, Z-X., Li, J., Zhu,
H- X. and Zhang, Q. (2012) An outbreak of sheep pox associated
with goat poxvirus in Gansu province of China. Vet. Microbiol.
156:425–428.
http://dx.doi.org/10.1016/j.vetmic.2011.11.015
PMid:22169434 |
|
18. Heine, H.G., Stevens, M.P., Foord, A.J. and Boyle, D.B.
(1999) A capripoxvirus detection PCR and antibody ELISA based
on the major antigen P32, the homolog of the vaccinia virus
H3L gene. J. Immunol. Meth. 227:187–196.
http://dx.doi.org/10.1016/S0022-1759(99)00072-1 |
|
19. Mangana-Vougiouka, O., Markoulatos, P., Koptopoulos, G.,
Nomikou, K., Bakandritsos, N. and Papadopoulos, P. (2000)
Sheep poxvirus identification from clinical specimens by PCR,
cell culture, immunofluorescence and agar gel
immunoprecipitation assay. Mol. Cell. Probes 14:305–310.
http://dx.doi.org/10.1006/mcpr.2000.0319
PMid:11040094 |
|
20. Orlova, E.S., Shcherbakova, A.V., Diev, V.I. and Zakharov,
V.M. (2006) Differentiation of capripoxvirus species and
strains by polymerase chain reaction. Mol. Biol. (Mosk) 40:
158–164.
http://dx.doi.org/10.1134/S0026893306010183 |
|
21. Venkatesan, G., Balamurugan, V., Yogisharadhya, R., Kumar,
A. and Bhanuprakash, V. (2012) Differentiation of sheeppox and
goatpox viruses by polymerase Chain reaction-restriction
fragment length polymorphism. Virol. Sin. 27:352–358.
http://dx.doi.org/10.1007/s12250-012-3277-2
PMid:23271576 |
|
|