|  | 
              
  
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research (Published 
online :  22-09-2013) 
2. Inclusion of different exogenous fibrolytic enzymes 
to dry jowar fodder and their effect on in vitro total gas production 
- S.H. Sipai, K.S. Dutta, H.H. Savsani, K.S. Murthy, P.H. Vataliya, J.A. Chavda 
and A.P. GajeraVeterinary World, 6(11): 839-843
 
                
              doi: 
              10.14202/vetworld.2013.839-843 
                
              
              
          
 
              Abstract 
 
              Aim: Our objective was to 
              estimate in-vitro gas production from dry jowar fodder added with 
              different concentrations of exogenous fibrolytic enzymes (EFEs) 
              like neutral cellulase and fungal xylanase.Materials and Methods: 34 different samples of dry jowar 
              fodder were prepared according to different concentrations of 
              neutral cellulase, fungal xylanase and neutral cellulase + fungal 
              xylanase (1:1). Sample not containing any enzymes was considered 
              as the control group. These 34 samples were subjected to further 
              in vitro gas production analysis.
 Results: Statistically, significantly higher (P<0.05) 
              potential gas production was recorded for 0.7 % at 6 hr period, 
              0.7 % at 12 hr period, 0.7 %, 0.8 % at 18 hr period and 0.7 %, 0.8 
              % at 24 hr period in the samples treated with neutral cellulase. 
              Significantly higher potential gas production was recorded for 0.5 
              %, 0.8 % at 6 hr period, 0.5 %, 0.6 %, 0.8 % at 12 hr period, 0.8 
              % at 18 hr period and 0.5 %, 0.6 %, 0.8 % at 24 hr period in the 
              samples treated with fungal xylanase. Significantly higher 
              potential gas production was recorded for 0.6 %, 0.6 %, 0.8 % at 6 
              hr period, 0.6 %, 0.8 % at 12 hr period, 0.6 %, 0.8 % at 18 hr 
              period and 0.6 %, 0.8 % at 24 hr period in the samples treated 
              with mixture of neutral cellulase + fungal xylanase (1:1).
 Conclusion: Addition of neutral cellulase and fungal 
              xylanase into the samples of dry jowar fodder increased in vitro 
              total potential gas production. EFEs increase substrate 
              degradation and there by improve the nutritive value of dry jowar 
              fodder.
 Keywords: dry jowar fodder, fungal xylanase, neutral 
              cellulase, total gas production
 
 
              References 
 
                
                  | 1. Beauchemin, K. A., Morgavi, D. P., McAllister, T. A., Yang, 
                  W. Z. and Rode, L. M. (2001) The Use of Enzymes in Ruminant 
                  Diets. In: Recent Advances in Animal Nutrition, Garnsworthy, 
                  P.C. and J. Wiseman (Eds.). Nottingham University Press, 
                  Loughborough, England, 297-322. |  
                  |  |  
                  | 2. Bandla, S., Chaturvedi, O. H., Malik. R., and Asgar, M. 
                  (2010) Effect of enzyme to substrate ratio of exogenous 
                  fibrolytic and protease enzymes on in vitro gas production 
                  kinetics. The Indian Journal of Small Ruminants. 14(2):181- 
                  190. |  
                  |  |  
                  | 3. Yancy M. I., Valli, C. and Balakrishnan, V. (2011) 
                  Enhancing utilization of sorghum stover and groundnut haulm by 
                  pre treating them with non – starch polysaccharidase mixture. 
                  Tamilnadu Journal of Veterinary & Animal Sciences. 
                  7(3):150-153. |  
                  |  |  
                  | 4. Vazquez, A. G., Martinez, G. M. and Rodriguez, J. P. (2011) 
                  Comparison of in vitro degradation of elephant grass and 
                  sugarcane by exogenous fibrolytic enzymes. African Journal of 
                  Microbiology Research. 5(19): 3051-3053. |  
                  |  |  
                  | 5. Gallardo Ismael, Barcena Ricardo, Juan Manuel Pinos- 
                  Rodriguez, Mario Cobos, Lorenzo Carreon and Maria Esther 
                  Ortega (2010) Influence of exogenous fibrolytic enzymes on in 
                  vitro and in sacco degradation of forages for ruminants. 
                  Italian Journal of Animal Science. 9(1): 34-38. |  
                  |  |  
                  | 6. Bhat, M. K. (2000) Cellulases and related enzymes in 
                  biotechnology. Biotechnol. Adv. 18: 355-383. http://dx.doi.org/10.1016/S0734-9750(00)00041-0
 |  
                  |  |  
                  | 7. Beg, Q. K., Kapoor, M., Mahajan, L. and Hoondal, G. S. 
                  (2001) Microbial xylanases and their industrial applications: 
                  a review. Appllied Microbiology and Biotechnology. 56: 
                  326-338. http://dx.doi.org/10.1007/s002530100704
 PMid:11548999
 |  
                  |  |  
                  | 8. Gado, H. M., Salem, A. Z., Robinson, P. H., and Hassan, M. 
                  (2009) Influence of exogenous enzymes on nutrient 
                  digestibility, extent of ruminal fermentation as well as milk 
                  production and composition in dairy cows. Animal Feed Science 
                  Technology. 154: 36-46. http://dx.doi.org/10.1016/j.anifeedsci.2009.07.006
 |  
                  |  |  
                  | 9. Alvarez, G., Pinos-Rodriguez, J. M., Herrera, J. G., 
                  Garcia, J. C., Gonzalez, S. S. and Barcena, R. (2009) Effects 
                  of exogenous fibrolytic enzymes on ruminal digestibility in 
                  steers fed high fibre rations. Livestock Science. 121: 150- 
                  154. http://dx.doi.org/10.1016/j.livsci.2008.05.024
 |  
                  |  |  
                  | 10. Makkar, H. P. S., Blümmel, M. and Becker, K. (1995) 
                  Formation of complexes between polyvinyl pyrrolidone and 
                  polyethylene glycol with tannins and their implications in gas 
                  production and true digestibility in in vitro techniques. 
                  British Journal of Nutrition. 73: 897-913. http://dx.doi.org/10.1079/BJN19950095
 PMid:7632671
 |  
                  |  |  
                  | 11. Blummel, M., Makkar, H. P. S. and Becker K. (1997) In 
                  vitro gas production: a technique revisited. Journal of Animal 
                  Physiology and Animal Nutrition. 77: 24-34. http://dx.doi.org/10.1111/j.1439-0396.1997.tb00734.x
 |  
                  |  |  
                  | 12. Menke, K. H., Raab, L., Salewski, A., Steingass, H., 
                  Fritz, D. and Schneider, W. (1979) The estimation of the 
                  digestibility and metabolizable energy content of ruminant 
                  feedstuffs from the gas production when they are incubated 
                  with rumen liquor in vitro. Journal of Agriculture Science. (Camb.). 
                  92: 217-222. http://dx.doi.org/10.1017/S0021859600086305
 |  
                  |  |  
                  | 13. Steingass, H. (1983) Bestimmung des energetischen 
                  Futterwertes von wirtschaftseigenen Futtermitteln aus der 
                  Gasbildung bei der Pansenfermentation in vitro. PhD Thesis, 
                  University of Hohenheim, Hohenheim, Germany. |  
                  |  |  
                  | 14. Snedecor, G. W. and Cochran, W. G. (1994) Statistical 
                  Methods. 6th Edn., IOWA State University Press, USA. 
                  pp258-298. |  
                  |  |  
                  | 15. Duncan, D. B. (1955) Multiple range and multiple F test. 
                  Biometrics, 11: 1-42. http://dx.doi.org/10.2307/3001478
 |  
                  |  |  
                  | 16. Sallam, S. M. A. (2005) Nutritive value assessment of the 
                  alternative feed resources by gas production and rumen 
                  fermentation In vitro. Research Journal of Agriculture and 
                  Biological Sciences, 1(2): 200-209. |  
                  |  |  
                  | 17. Vitti, D. M. S. S., Nozella, E. F., Abdalla, A. L., Buenoa, 
                  I. C. S., Silva Filho, J. C., Costa, C., Buenod, M. S., Longo, 
                  C., Vieira, M. E. Q., Cabral Filho, S. L. S., Godoy, P. B. and 
                  Mueller-Harvey, I. (2005) The effect of drying and urea 
                  treatment on nutritional and anti-nutritional components of 
                  browses collected during wet and dry seasons. Animal Feed 
                  Science Technology. 122: 123-133. http://dx.doi.org/10.1016/j.anifeedsci.2005.04.007
 |  
                  |  |  
                  | 18. Sallam, S. M. A., Bueno, I. C. S., Godoy, P. B., Nozella, 
                  E. F., Vitti, D. M. S. S. and Abdalla, A. L. (2008) Nutritive 
                  value assessment of the artichoke (Cynara scolymus) by-product 
                  as an alternative feed resource for ruminants. Tropic 
                  Subtropic Agroecosys. 8: 181- 189. |  
                  |  |  
                  | 19. Medjekal, S., Arhab, R. and Bousseboua, H. (2011) 
                  Nutritive value assessment of some desert by-products by gas 
                  production and rumen fermentation in vitro. Livestock Research 
                  for Rural Development. 23 (3):217-222. |  
                  |  |  
                  | 20. Wallace, R. J., Wallace, S. J. A., McKain, N., Nsereko, V. 
                  L., and Hartnell, G. F. (2001) Influence of supplementary 
                  fibrolytic enzymes on the fermentation of corn and grass 
                  silages by mixed ruminal microorganisms in vitro. Journal of 
                  Animal Science. 79: 1905–1916. PMid:11465379
 |  
                  |  |  
                  | 21. Tang, S. X., Tayo, G. O., Tan, Z. L., Sun, Z. H., Shen, L. 
                  X., Zhou, C. S., Xiao, W. J., Ren, G. P., Han, X. F. and Shen, 
                  S. B. (2008) Effects of yeast culture and fibrolytic enzyme 
                  supplementation on in vitro fermentation characteristics of 
                  low-quality cereal straws. Journal of Animal Science. 86: 
                  1164–1172. http://dx.doi.org/10.2527/jas.2007-0438
 PMid:18203979
 |  
                  |  |  
                  | 22. Weimer, P. J. (1996) Why don't ruminal bacteria digest 
                  cellulose faster? Journal of Dairy Science. 79: 1496-1502. http://dx.doi.org/10.3168/jds.S0022-0302(96)76509-8
 |  
                  |  |  
                  | 23. Jalilvand, G., Odongo, N. E., Lopez, S., Naserian, A., 
                  Valizadeh, F., Eftekhar Shahrodi, F., Kebreab, E. and France, 
                  J. (2008) Effects of different levels of an enzyme mixture on 
                  in vitro gas production parameters of contrasting forages. 
                  Animal Feed Science Technoogyl. 146: 289-301. http://dx.doi.org/10.1016/j.anifeedsci.2008.01.007
 |  |  |