|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Review (Published
online : 31-07-2013)
1.
Animal salmonelloses: a brief review of “host
adaptation and host specificity” of Salmonella spp. - Grammato
Evangelopoulou, Spyridon Kritas, Alexander Govaris and Angeliki R. Burriel
Veterinary World, 6(10): 703-708
doi:
10.14202/vetworld.2013.703-708
Abstract
Salmonella enterica, the most
pathogenic species of the genus Salmonella, includes more than
2,500 serovars, many of which are of great veterinary and medical
significance. The emergence of food-borne pathogens, such as
Salmonella spp., has increased knowledge about the mechanisms
helping microorganisms to persist and spread within new host
populations. It has also increased information about the
properties they acquire for adapting in the biological environment
of a new host. The differences observed between serovars in their
host preference and clinical manifestations are referred to as
“serovar-host specificity” or “serovar-host adaptation”. The genus
Salmonella, highly adaptive to vertebrate hosts, has many
pathogenic serovars showing host specificity. Serovar Salmonella
Typhi, causing disease to man and higher primates, is a good
example of host specificity. Thus, understanding the mechanisms
that Salmonella serovars use to overcome animal species' barriers
or adapt to new hosts is also important for understanding the
origins of any other infectious diseases or the emergence of new
pathogens. In addition, molecular methods used to study the
virulence determinants of Salmonella serovars, could also be used
to model ways of studying the virulence determinants used by
bacteria in general, when causing disease to a specific animal
species.
Keywords: adaptation, evolution, host, Salmonella
References
1. Lin-Hui, S. and Cheng-Hsun, C. (2007) Salmonella: Clinical
Importance and Evolution of Nomenclature. Chang Gung Med. J.
30(3): 210–219. |
|
2. Fedorka, P. J. - Cray, T., Gray, J.T, Wray, C. (2000)
Salmonella Infections in Pigs In: Wray, C., Wray, A., editor.
Salmonella in domestic animals. CABI Publishing, New York.
191-208. |
|
3. Wallis, T.S. (2005) Host-specificity of Salmonella
infections in animal species. In: Mastroeni, P., Maskell, D.,
editors. 'Salmonella' Infections: Clinical, Immunological and
Molecular Aspects, Cambridge University Press. 57-80. |
|
4. Uzzau, S., Leori, G.S., Petruzzi, V., Watson, P. R.,
Schianchi, G, Bacciu, D., Mazzarello, V., Wallis, T. S. and
Rubino, S. (2001) Salmonella enterica Serovar-Host Specificity
Does Not Correlate with the Magnitude of Intestinal Invasion
in Sheep. Infect. Immun., 69(5):3092–3099.
http://dx.doi.org/10.1128/IAI.69.5.3092-3099.2001
PMid:11292728 PMCid:PMC98264 |
|
5. Kingsley, R. and Baumler, A.J. (2000). Host adaptation and
the emergence of infectious disease: the Salmonella paradigm.
Mol. Microbiol. 36(5):1006-1014.
http://dx.doi.org/10.1046/j.1365-2958.2000.01907.x
PMid:10844686 |
|
6. Bäumler, A.J., Tsolis, R.M., Ficht, T.A. and Adams, L.G.
(1998) Evolution of host adaptation in Salmonella enterica.
Infect. Immun. 66:4579–4587.
PMid:9746553 PMCid:PMC108564 |
|
7. Retchless, A.C. and Lawrence, J. G. (2010) Phylogenetic
incongruence arising from fragmented speciation in enteric
bacteria. PNAS. 107 : 11453–11458.
http://dx.doi.org/10.1073/pnas.1001291107
PMid:20534528 PMCid:PMC2895130 |
|
8. Collazo, C.M. and Galan, J.E. (1997) The invasion-
associated type-III protein secretion system in Salmonella-a
review. Gene.192:51–59.
http://dx.doi.org/10.1016/S0378-1119(96)00825-6 |
|
9. Hensel, M. (2000) Salmonella pathogenicity island 2. Mol.
Microbiol. 36:1015–1023.
http://dx.doi.org/10.1046/j.1365-2958.2000.01935.x
PMid:10844687 |
|
10. Karasova, D., Sebkova, A., Havlickova, H., Sisak, F., Volf,
J., Faldyna, M., Ondrackova, P., Kummer, V. and Rychlik, I.
(2010) Influence of 5 major Salmonella pathogenicity islands
on NK cell depletion in mice infected with Salmonella enterica
serovar Enteritidis. BMC Microbiol. 10:75.
http://dx.doi.org/10.1186/1471-2180-10-75
PMid:20226037 PMCid:PMC2848020 |
|
11. De Lappe, N. (2009) Salmonella Taxonomy. Version 1. Ref
NSRLFM041, Dept of Medical Microbiology, Division of Clinical
Microbiology, Galway University Hospitals. http://www.nuigalway.ie/research/salmonella_lab/downloads/salmonella_taxonomy.pdf.
Accessed on 5/06/2013. |
|
12. Nnalue, N.A. (1991) Relevance of inoculation route to
virulence of three Salmonella spp. strains in mice. Microb.
Pathog . 11: 11-8.
http://dx.doi.org/10.1016/0882-4010(91)90089-S |
|
13. Ellermeier, C. D. and Slauch, J. M. (2006) The Genus
Salmonella In: Dworkin, M., Falkow, S., Rosenberg E.,
Schleifer, K.H, Stackebrandt, E., editors. The Prokaryotes A
Handbook on the Biology of Bacteria, 3rd Edition, Springer
Science and Business Media, LLC, 6: 123–158. |
|
14. Clarke, R.C. and Gyles, C.L. (1993) Salmonella. In: Gyles,
C.L., Thoen, C.O., editors. Pathogenesis of Bacterial
Infections in Animals, 2nd edn. Iowa State University Press,
Ames, Iowa. 133–153. |
|
15. Uzzau, S., Brown D. J., Wallis, T., Rubino, S., Leori, G.,
Bernard S., Casadesus J., Platt, D. J. and Olsen, J. E. (2000)
Host adapted serotypes of Salmonella enterica. Epidemiol.
Infect. 125: 229-255.
http://dx.doi.org/10.1017/S0950268899004379
PMid:11117946 PMCid:PMC2869595 |
|
16. Alpuche-Aranda, C. M., Berthiaume, E. P., Mock, B.,
Swanson, J. A. and Miller, S. I. (1995) Spacious phagosome
formation within mouse macrophages correlates with Salmonella
serotype pathogenicity and host susceptibility. Infect. Immun.
63: 4456–62.
PMid:7591085 PMCid:PMC173634 |
|
17. Knodler, L. A. and Finlay, B. B. (2001) Salmonella and
apoptosis; to live or let die? Microbes Infect. 3: 1321–1326.
http://dx.doi.org/10.1016/S1286-4579(01)01493-9 |
|
18. Rubino, S., Leori, G., Rizzu, P., Erre, G., Colombo, M.
M., Uzzau, S., Masala, G. and Cappuccinelli, P. (1993) TnphoA
Salmonella abortusovis mutants unable to adhere to epithelial
cells and with reduced virulence in mice. Infect. Immun. 61
(5): 1786-92.
PMid:8386703 PMCid:PMC280766 |
|
19. Reynolds, J.D. and Morris, B. (1983) The evolution and
involution of Peyer's patches in fetal and postnatal sheep.
Eur. J. Immunol. 13: 627-35.
http://dx.doi.org/10.1002/eji.1830130805
PMid:6884422 |
|
20. Watson, P. R., Galyov, E. E., Paulin, S. M., Jones, P. W.
and Wallis, T. S. (1998) Mutation of invH, but not stn,
reduces Salmonella-induced enteritis in cattle. Infect. Immun.,
66:1432–8.
PMid:9529064 PMCid:PMC108071 |
|
21. Pan, Z., Carter, B., Nunez-Garcia, J., Abuoun. M., Fookes,
M., Ivens, A., Woodward, M.J. and Anjum, M.F. (2009)
Identification of genetic and phenotypic differences
associated with prevalent and non-prevalent Salmonella
Enteritidis phage types: analysis of variation in amino acid
transport. Microbiology. 155:3200-3213.
http://dx.doi.org/10.1099/mic.0.029405-0
PMid:19574306 |
|
22. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F.
and Van Immerseel, F. (2008) Salmonella enterica serovar
Enteritidis genes induced during oviduct colonization and egg
contamination in laying hens. Appl Environ Microbiol.
74(21):6616-6622.
http://dx.doi.org/10.1128/AEM.01087-08
PMid:18776023 PMCid:PMC2576714 |
|
23. Guard, J., Shah, D.H., Morales, C.A. and Call, D.R. (2011)
Evolutionary Trends Associated with Niche Specialization as
Modelled by Whole Genome Analysis of Egg- contaminating
Salmonella enterica serovar Enteritidis. In: Porwollik, S.,
editor. Salmonella: From Genome to Function. San Diego, CA:
Caister Academic Press. 91-106. |
|
24. Chiu, C.H., Tang, P., Chu, C., Hu, S., Bao, Q., Yu, J.,
Chou, Y.Y., Wang, H.S. and Lee, Y.S. (2005) The genome
sequence of Salmonella enterica serovar Choleraesuis, a highly
invasive and resistant zoonotic pathogen. Nucleic Acids Res.
33: 1690–1698.
http://dx.doi.org/10.1093/nar/gki297
PMid:15781495 PMCid:PMC1069006 |
|
25. McClelland, M., Sanderson, K.E., Clifton, S.W., Latreille,
P., Porwollik, S., Sabo, A., Meyer, R., Bieri, T., Ozersky,
P., McLellan, M., Harkins, C.R., Wang, C., Nguyen, C.,
Berghoff, A., Elliott, G., Kohlberg, S., Strong, C., Du, F.,
Carter, J., Kremizki, C., Layman, D., Leonard, S., Sun, H.,
Fulton, L., Nash, W., Miner, T., Minx, P., Delehaunty, K.,
Fronick, C., Magrini, V., Nhan, M., Warren, W., Florea, L.,
Spieth, J. and Wilson, R.K. (2004) Comparison of genome
degradation in Paratyphi A and Typhi, humanrestricted serovars
of Salmonella enterica that cause typhoid. Nat. Genet. 36:
1268–1274.
http://dx.doi.org/10.1038/ng1470
PMid:15531882 |
|
26. Holt, K.E., Thomson, N.R., Wain, J., Langridge, G.C.,
Hasan, R., Bhutta, Z.A., Quail, M.A., Norbertczak, H., Walker,
D., Simmonds, M.,White, B., Bason, N., Mungall, K., Dougan, G.
and Parkhill, J. (2009) Pseudogene accumulation in the
evolutionary histories of Salmonella enterica serovars
Paratyphi A and Typhi. BMC Genomics. 10: 36.
http://dx.doi.org/10.1186/1471-2164-10-36
PMid:19159446 PMCid:PMC2658671 |
|
27. Thomson, N.R., Clayton, D.J., Windhorst, D., Vernikos, G.,
Davidson, S., Churcher, C., Quail, M.A., Stevens, M., Jones,
M.A., Watson, M., Barron, A., Layton, A., Pickard, D.,
Kingsley, R.A., Bignell, A., Clark, L., Harris, B., Ormond,
D., Abdellah, Z., Brooks, K., Cherevach, I., Chillingworth,
T., Woodward, J., Norberczak, H., Lord, A., Arrowsmith, C.,
Jagels, K., Moule, S., Mungall, K., Sanders, M., Whitehead,
Chabalgoity, J.A., Maskell, D., Humphrey, T., Roberts, M.,
Barrow, P.A., Dougan, G., and Parkhill, J. (2008) Compara-
tive genome analysis of Salmonella Enteritidis PT4 and
Salmonella Gallinarum 287/91 provides insights into
evolutionary and host adaptation pathways. Genome Res. 18:
1624–1637.
http://dx.doi.org/10.1101/gr.077404.108
PMid:18583645 PMCid:PMC2556274 |
|
28. Kingsley, R.A., Msefula, C.L., Thomson, N.R., Kariuki, S.,
Holt, K.E., Gordon, M.A., Harris, D., Clarke, L., Whitehead,
S., Sangal, V., Marsh, K., Achtman, M., Molyneux, M.E.,
Cormican, M., Parkhill, J., MacLennan, C.A., Heyderman, R.S.
and Dougan, G. (2009) Epidemic multiple drug resistant
Salmonella Typhimurium causing invasive disease in sub-
Saharan Africa have a distinct genotype. Genome Res. 19:
2279–2287.
http://dx.doi.org/10.1101/gr.091017.109
PMid:19901036 PMCid:PMC2792184 |
|
29. Kisiela, D.I., Chattopadhyay, S., Libby, S.J., Karlinsey,
J.E., Fang, F.C., Tchesnokova, V., Kramer, J.J, Beskhlebnaya,
V., Samadpour, M., Grzymajlo, K., Ugorski, M., Lankau, E.W.,
Mackie, R.I., Clegg, S. and Sokurenko, E.V. (2012) Evolution
of Salmonella enterica Virulence via Point Mutations in the
Fimbrial Adhesin. PLoS Pathog. 8(6): e1002733.
http://dx.doi.org/10.1371/journal.ppat.1002733
PMid:22685400 PMCid:PMC3369946 |
|
30. Olsen, J.E., Hoegh-Andersen, K.H., Casadesús, J.,
Rosenkranzt, J., Chadfield, M.S. and Thomsen, L.E. (2013) The
role of flagella and chemotaxis genes in host pathogen
interaction of the host adapted Salmonella enterica serovar
Dublin compared to the broad host range serovar S. Typhimurium.
BMC Microbiology. 13:67.
http://dx.doi.org/10.1186/1471-2180-13-67
PMid:23530934 PMCid:PMC3621167 |
|
31. Rabsch, W., Andrews, H. L., Kingsley, R. A., Prager, R.,
Tschäpe, H., Adams, L. G., and Baumler, A. J. (2002)
Salmonella enterica serotype Typhimurium and its host- adapted
variants. Infect. Immun. 70: 2249–2255.
http://dx.doi.org/10.1128/IAI.70.5.2249-2255.2002
PMid:11953356 PMCid:PMC127920 |
|
32. Heithoff, D.M, Shimp, W.R., Lau, P.W., Badie. G.,
Enioutina, E.Y., Daynes, R. A., Byrne, B.A., House, J.K. and
Mahan, M.J. (2008) Human Salmonella Clinical Isolates Distinct
from Those of Animal Origin. Appl. Environ Microbiol. 74(6):
1757–1766.
http://dx.doi.org/10.1128/AEM.02740-07
PMid:18245251 PMCid:PMC2268321 |
|
33. Guo, A., Cao, S., Tu, L., Chen, P., Zhang, C., Jia, A.,
Yang, W., Liu, Z., Chen, H. and Schifferli, D.M. (2009) FimH
alleles direct preferential binding of Salmonella to distinct
mammalian cells or to avian cells. Microbiology. 155: 1623-33.
http://dx.doi.org/10.1099/mic.0.026286-0
PMid:19383701 |
|
34. De Jong, H.K., Parry, C.M, van der Poll, T. and Wiersinga,
W.J. (2012). Host–Pathogen Interaction in Invasive
Salmonellosis. PLOs Pathogens. 8(10): e1002933.
http://dx.doi.org/10.1371/journal.ppat.1002933
PMid:23055923 PMCid:PMC3464234 |
|
35. Eswarappa, S.M., Janice, J., Nagarajan, A.G., Balasundaram,
S.V., Karnam G, Dixit, N.M. and Chakravortty, D. (2008)
Differentially Evolved Genes of Salmonella Pathogenicity
Islands: Insights into the Mechanism of Host Specificity in
Salmonella. PLoS ONE 3(12): e3829.
http://dx.doi.org/10.1371/journal.pone.0003829
PMid:19050757 PMCid:PMC2585142 |
|
36. Eswarappa, S.M., Janice, J., Balasundaram, S.V., Dixit,
N.M. and Chakravortty, D. (2009) Host-specificity of
Salmonella enterica serovar Gallinarum: insights from
comparative genomics. Infect. Genet. Evol. 9: 468–473.
http://dx.doi.org/10.1016/j.meegid.2009.01.004
PMid:19454277 |
|
37. Liu, W.Q., Feng, Y., Wang, Y., Zou, Q.H., Chen, F., Guo,
J.T., Peng, Y.H., Jin, Y., Li, Y.G., Hu, S.N., Johnston, R.N.,
Liu, G.R. and Liu, S.L. (2009) Salmonella Paratyphi C: Genetic
Divergence from Salmonella Choleraesuis and Pathogenic
Convergence with Salmonella Typhi. PLoS ONE 4(2):e4510.
http://dx.doi.org/10.1371/journal.pone.0004510
PMid:19229335 PMCid:PMC2640428 |
|
38. Chen, H.M., Wang, Y., Su, L.H. and Chiu, C.H. (2013)
Nontyphoid Salmonella Infection: Microbiology, Clinical
Features, and Antimicrobial Therapy. Pediatrics and
Neonatology. 54(3): 147-152.
http://dx.doi.org/10.1016/j.pedneo.2013.01.010
PMid:23597525 |
|
39. Scheelings, T.F., Lightfoot, D. and Holz, P. (2011)
Prevalence of Salmonella in Australian reptiles. J Wildl. Dis.
47: 1–11.
PMid:21269991 |
|
40. Richardson, E.J., Limaye, B., Inamdar, H., Datta, A.,
Manjari, K.S., Pullinger, G.D., Thomson, N.R., Joshi, R.R.,
Watson, M. and Stevens, M.P. (2011) Genome Sequences of
Salmonella enterica Serovar Typhimurium, Choleraesuis, Dublin,
and Gallinarum Strains of Well-Defined Virulence in
Food-Producing Animals. J. Bacteriol. 193(12):3162- 3163.
http://dx.doi.org/10.1128/JB.00394-11
PMid:21478351 PMCid:PMC3133203 |
|
41. Stevens, M.P., Humphrey, T.J. and Maskell, D.J. (2009)
Molecular insights into farm animal and zoonotic Salmonella
infections. Phil. Trans. R. Soc. B. 364: 2709– 2723.
http://dx.doi.org/10.1098/rstb.2009.0094
PMid:19687040 PMCid:PMC2865095 |
|
|