|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Review (Published
online : 16-08-2013)
13. MicroRNA: biogenesis and computational target
identification: a review - Amod Kumar, V. N. Muhasin Asaf, Kush
Srivastava, Abdul Rahim, J. K. Chaudhary and Manjit Panigrahi
Veterinary World, 6(10): 761-765
doi:
10.14202/vetworld.2013.761-765
Abstract
MicroRNAs are a class of small,
endogenously produced, 18 to 24 nucleotides long in length. These
are non-coding RNAs that regulate the gene expression at
post-transcriptional level. They play important roles in animals
and plants by controlling regulatory mechanisms, and likely
influencing the output of many protein-coding genes. They
generally bind to 3' UTR region of the target sequence which then
leads to alterations in the gene expression. They also bind to
other regions like coding sequence and 5' UTR but these are less
efficient sites of interaction compared to 3'UTR. This alteration
in gene expression is either due to repression of translation or
mRNA degradation whereby the RNA interference pathway is initiated
to eliminate the targeted sequences. Now a days, various
computational or bioinformatics databases, tools, and algorithms
have been developed to identify the target genes which will be
further biologically validated using various techniques like
reporter gene assay, qRT-PCR, microarray etc.
Keywords: miRNA, gene regulation, UTR, bioinformatics
References
1. Zhang, Z., Qin, Y. W., Brewer, G. and Jing, Q. (2012)
MicroRNA degradation and turnover: regulating the regulators.
WIREs RNA 3:593–600.
http://dx.doi.org/10.1002/wrna.1114
PMid:22461385 PMCid:PMC3635675 |
|
2. Pritchard, C. C., Cheng, H. H. and Tewari, M. (2012)
MicroRNA profiling: approaches and considerations. Nature
Reviews Genetics 13, 358-369.
http://dx.doi.org/10.1038/nrg3198
PMid:22510765 |
|
3. Pillai, R. S., Bhattacharyya, S. N. and Filipowicz, W.
(2007) Repression of protein synthesis by miRNAs: how many
mechanisms? Trends Cell Biol., 17, 118–126.
http://dx.doi.org/10.1016/j.tcb.2006.12.007
PMid:17197185 |
|
4. Ambros, V. (2004) The functions of animal microRNAs. Nature
431: 350–355.
http://dx.doi.org/10.1038/nature02871
PMid:15372042 |
|
5. Rottiers, V. and Näär, A. M. (2012) MicroRNAs in metabolism
and metabolic disorders. Nat Rev Mol Cell Biol. 13(4):239-50.
http://dx.doi.org/10.1038/nrm3313
PMid:22436747 |
|
6. Bushati, N. and Cohen, S. M. (2007) microRNA functions.
Annu. Rev.Cell Dev. Biol. 23, 175–205.
http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406
PMid:17506695 |
|
7. Lin, S. L., Miller, J. D. and Ying, S. Y. (2006) Intronic
MicroRNA (miRNA). J Biomed Biotechnol. 26818.
PMid:17057362 PMCid:PMC1559912 |
|
8. Xiao, C. and Rajewsky, K. (2009) MicroRNA control in the
immune system: basic principles. Cell 136: 26-36.
http://dx.doi.org/10.1016/j.cell.2008.12.027
PMid:19135886 |
|
9. Berezikov, E. (2011) Evolution of microRNA diversity and
regulation in animals. Nat Rev Genet. 12(12):846-60.
http://dx.doi.org/10.1038/nrg3079
PMid:22094948 |
|
10. Bartel, D. P. (2004) MicroRNAs: Genomics, Biogenesis,
Mechanism, and Function. Cell 116 (2): 281 - 297.
http://dx.doi.org/10.1016/S0092-8674(04)00045-5 |
|
11. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993) The C.
elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell 75 (5):843 - 854.
http://dx.doi.org/10.1016/0092-8674(93)90529-Y |
|
12. Burnside, J. and Morgan, R. (2011) Emerging roles of
chicken and viral microRNAs in avian disease. BMC Proc. 5
Suppl 4:S2. |
|
13. Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R.,
Sander, C., Grässer, F. A., van Dyk, L. F., Ho, C. K., Shuman,
S., Chien, M., Russo, J. J., Ju, J., Randall, G., Lindenbach,
B. D., Rice, C. M., Simon, V., Ho, D. D., Zavolan, M., Tuschl,
T. (2005) Identification of microRNAs of the herpesvirus
family. Nat. Methods 2(4):269-76.
http://dx.doi.org/10.1038/nmeth746
PMid:15782219 |
|
14. O'Connell, R. M., Rao, D. S., and Baltimore, D. (2012)
microRNA regulation of inflammatory responses. Annu Rev
Immunol. 30:295-312.
http://dx.doi.org/10.1146/annurev-immunol-020711-075013
PMid:22224773 |
|
15. Friedman, R. C., Farh, K.K., Burge, C. B., Bartel, D. P.
(2009) Most mammalian mRNAs are conserved targets of microRNAs.
Genome Research; 19:92-105.
http://dx.doi.org/10.1101/gr.082701.108
PMid:18955434 PMCid:PMC2612969 |
|
16. Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W.
L., Thomson, A. M., Lim, B., Rigoutsos, I. (2006) A pattern-
based method for the identification of MicroRNA binding sites
and their corresponding heteroduplexes. Cell 126: 1203–1217.
http://dx.doi.org/10.1016/j.cell.2006.07.031
PMid:16990141 |
|
17. Huntzinger, E. and Izaurralde, E. (2011) Gene silencing by
microRNAs: contributions of translational repression and mRNA
decay. Nat Rev Genet. (2):99-110.
http://dx.doi.org/10.1038/nrg2936
PMid:21245828 |
|
18. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N.
(2002) MicroRNA maturation: stepwise processing and
subcellular localization. EMBO 21 (17):4663 - 4670.
http://dx.doi.org/10.1093/emboj/cdf476
PMCid:PMC126204 |
|
19. Nam, J. W., Shin, K. R., Han, J., Lee, Y., Kim, V. N.,
Zhang, B. T. (2005) Human microRNA prediction through a
probabilistic co-learning model of sequence and structure.
Nucleic Acids Res. 33(11) 3570-3581.
http://dx.doi.org/10.1093/nar/gki668
PMid:15987789 PMCid:PMC1159118 |
|
20. McDaneld, T. G. (2009) MicroRNA: mechanism of gene
regulation and application to livestock. Journal of animal
science 87:E21-E28.
http://dx.doi.org/10.2527/jas.2008-1303
PMid:18791136 |
|
21. Griffiths-Jones, S., Grocock, R. J., Dongen, S.V.,
Bateman, A. and Enright, A. J. (2005) miRBase: microRNA
sequences, targets and gene nomenclature. Nucleic Acids
Research 34 (suppl 1): D140-D144.
http://dx.doi.org/10.1093/nar/gkj112
PMid:16381832 PMCid:PMC1347474 |
|
22. Jackson, R. J., and Standart, N. (2007) How do microRNAs
regulate gene expression? Sci. STKE 367: re1.
http://dx.doi.org/10.1126/stke.3672007re1
PMid:17200520 |
|
23. Buchan, J. R., and Parker, R. (2007) The two faces of
miRNA. Science 318:1877–1878.
http://dx.doi.org/10.1126/science.1152623
PMid:18096794 |
|
24. Shyu, A. B., Wilkinson, M. F., Hoof, A.V. (2008).
Messenger RNA regulation: To translate or to degrade. EMBO J.
27:471–481.
http://dx.doi.org/10.1038/sj.emboj.7601977
PMid:18256698 PMCid:PMC2241649 |
|
25. Wu, L., Fan, J., Belasco, J.G. (2006) MicroRNA direct
rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103:
4034–4039.
http://dx.doi.org/10.1073/pnas.0510928103
PMid:16495412 PMCid:PMC1449641 |
|
26. Thermann, R., and Hentze, M. W. (2007) Drosophila miR2
induces pseudo-polysomes and inhibits translation initiation.
Nature 447:875–878.
http://dx.doi.org/10.1038/nature05878
PMid:17507927 |
|
27. Kiriakidou, M., Tan, G. S., Lamprinaki, S., Planell-Saguer,
M. D., Nelson, P. T., Mourelatos, W. (2007) An mRNA m7G cap
binding-like motif within human Ago2 represses translation.
Cell 129:1141–1151.
http://dx.doi.org/10.1016/j.cell.2007.05.016
PMid:17524464 |
|
28. Chan, S. P., and Slack, F. J. (2006) microRNA-mediated
silencing inside P-bodies. RNA Biol. 3:97–100.
http://dx.doi.org/10.4161/rna.3.3.3499
PMid:17179742 |
|
29. Yoon, S., and Micheli, G. D. (2006) Computational
identification of microRNAs and their targets. Birth Defects
Research Part C: Embryo Today: Reviews 78 (2):118-128.
http://dx.doi.org/10.1002/bdrc.20067
PMid:16847881 |
|
30. Maziere, P. and Enright, A. J. (2007) Prediction of
microRNA targets. Drug Discovery Today 12 (11):452 – 458.
http://dx.doi.org/10.1016/j.drudis.2007.04.002
PMid:17532529 |
|
31. Bartel, D. P. (2009) MicroRNAs: target recognition and
regulatory functions. Cell. 136: 215-233.
http://dx.doi.org/10.1016/j.cell.2009.01.002
PMid:19167326 |
|
32. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., & Li, T.
(2009) miRecords: an integrated resource for microRNA–target
interactions. Nucleic Acids Research 37:D105–D110.
http://dx.doi.org/10.1093/nar/gkn851
PMid:18996891 PMCid:PMC2686554 |
|
33. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and
Segal, E. (2007) The role of site accessibility in microRNA
target recognition. Nat Genet. 39: 1278-1284.
http://dx.doi.org/10.1038/ng2135
PMid:17893677 |
|
34. Hofacker, I. L. (2007) How microRNAs choose their targets.
Nat Genet. 39: 1191-1192.
http://dx.doi.org/10.1038/ng1007-1191
PMid:17898777 |
|
35. Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005)
Conserved seed pairing, often flanked by adenosines, indicates
that thousands of human genes are microRNA targets. Cell;
120(1): 15-20.
http://dx.doi.org/10.1016/j.cell.2004.12.035
PMid:15652477 |
|
36. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele,
P., Lim, L.P., and Bartel, D.P. (2007) MicroRNA targeting
specificity in mammals: determinants beyond seed pairing. Mol.
Cell 27: 91–105.
http://dx.doi.org/10.1016/j.molcel.2007.06.017
PMid:17612493 |
|
37. Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A.,
Yekta, S., Rhoades, M.W., Burge, C.B. and Bartel, D.P. (2003)
The microRNAs of Caenorhabditis elegans. Genes & Dev., 17:
991–1008.
http://dx.doi.org/10.1101/gad.1074403
PMid:12672692 PMCid:PMC196042 |
|
38. Bernhart, S. H., Tafer, H., Mückstein, U., Flamm, C.,
Stadler, P. F and Hofacker, I. L. (2006) Partition function
and base pairing probabilities of RNA heterodimers. Algorithms
Mol Biol. 1(1):3.
http://dx.doi.org/10.1186/1748-7188-1-3
PMid:16722605 PMCid:PMC1459172 |
|
39. Lewis, B. P., Shih, I., Jones-Rhoades, M. W., Bartel, D.
P. and Burge, C. B. (2003) Prediction of Mammalian MicroRNA
Targets. Cell, 115(7), 787-798.
http://dx.doi.org/10.1016/S0092-8674(03)01018-3 |
|
40. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C.
and Marks, D. S. (2004) MicroRNA targets in Drosophila. Genome
Biol. 5(1), 1.
http://dx.doi.org/10.1186/gb-2003-5-1-r1
PMid:14709173 |
|
41. Wang, X. (2008) miRDB: a microRNA target prediction and
functional annotation database with a wiki interface. RNA 14
(6), 1012-1017.
http://dx.doi.org/10.1261/rna.965408
PMid:18426918 PMCid:PMC2390791 |
|
42. Krek, A., GrÄun, D., Poy, M. N., Wolf, R., Rosenberg, L.,
Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K.
C. and Stoffel, M. (2005) Combinatorial microRNA target
predictions. Nat. Genet. 37, 495-500.
http://dx.doi.org/10.1038/ng1536
PMid:15806104 |
|
43. Kim, S. K., Nam, J. W., Rhee, J. K., Lee, W. J. and Zhang,
B. T. (2006) miTar- get: microRNA target gene prediction using
a support vector ma- chine. BMC Bioinform., 7(1), 411.
http://dx.doi.org/10.1186/1471-2105-7-411
PMid:16978421 PMCid:PMC1594580 |
|
44. Yue, D., Liu, H. and Huang, Y. (2009) Survey of
Computational Algorithms for MicroRNA Target Prediction.
Current Genomics, 10, 478-492.
http://dx.doi.org/10.2174/138920209789208219
PMid:20436875 PMCid:PMC2808675 |
|
45. Long, J. M. and Lahiri, D. K. (2012) Advances in microrna
experimental approaches to study physiological regulation of
gene products implicated in cns disorders. Exp. Neurol., 235:
402-418.
http://dx.doi.org/10.1016/j.expneurol.2011.12.043
PMid:22245616 |
|
46. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z.,
Khanin, R. and Rajewsky, N. (2008) Widespread changes in
protein synthesis induced by microRNAs. Nature. 455: 58-63.
http://dx.doi.org/10.1038/nature07228
PMid:18668040 |
|
47. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L.,
Epstein, E. J., Macmenamin, P., da Piedade, I., Gunsalus, K.
C., Stoffel, M. and Rajewsky, N. (2005) Combinatorial microRNA
target predictions. Nat Genet. 37: 495-500.
http://dx.doi.org/10.1038/ng1536
PMid:15806104 |
|
48. Rehmsmeier, M., Steffen, P., Chsmann, M. H. and Giegerich,
R. (2004) Fast and effective prediction of microRNA/target
duplexes. RNA 10:1507–1517.
http://dx.doi.org/10.1261/rna.5248604
PMid:15383676 PMCid:PMC1370637 |
|
|