|  | 
              
  
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Review (Published 
online :  16-08-2013) 
13. MicroRNA: biogenesis and computational target 
identification: a review - Amod Kumar, V. N. Muhasin Asaf, Kush 
Srivastava, Abdul Rahim, J. K. Chaudhary and Manjit PanigrahiVeterinary World, 6(10): 761-765
 
                
              doi: 
              10.14202/vetworld.2013.761-765 
                
              
              
          
 
              Abstract 
 
              MicroRNAs are a class of small, 
              endogenously produced, 18 to 24 nucleotides long in length. These 
              are non-coding RNAs that regulate the gene expression at 
              post-transcriptional level. They play important roles in animals 
              and plants by controlling regulatory mechanisms, and likely 
              influencing the output of many protein-coding genes. They 
              generally bind to 3' UTR region of the target sequence which then 
              leads to alterations in the gene expression. They also bind to 
              other regions like coding sequence and 5' UTR but these are less 
              efficient sites of interaction compared to 3'UTR. This alteration 
              in gene expression is either due to repression of translation or 
              mRNA degradation whereby the RNA interference pathway is initiated 
              to eliminate the targeted sequences. Now a days, various 
              computational or bioinformatics databases, tools, and algorithms 
              have been developed to identify the target genes which will be 
              further biologically validated using various techniques like 
              reporter gene assay, qRT-PCR, microarray etc. Keywords: miRNA, gene regulation, UTR, bioinformatics
 
 
              References 
 
                
                  | 1. Zhang, Z., Qin, Y. W., Brewer, G. and Jing, Q. (2012) 
                  MicroRNA degradation and turnover: regulating the regulators. 
                  WIREs RNA 3:593–600. http://dx.doi.org/10.1002/wrna.1114
 PMid:22461385 PMCid:PMC3635675
 |  
                  |  |  
                  | 2. Pritchard, C. C., Cheng, H. H. and Tewari, M. (2012) 
                  MicroRNA profiling: approaches and considerations. Nature 
                  Reviews Genetics 13, 358-369. http://dx.doi.org/10.1038/nrg3198
 PMid:22510765
 |  
                  |  |  
                  | 3. Pillai, R. S., Bhattacharyya, S. N. and Filipowicz, W. 
                  (2007) Repression of protein synthesis by miRNAs: how many 
                  mechanisms? Trends Cell Biol., 17, 118–126. http://dx.doi.org/10.1016/j.tcb.2006.12.007
 PMid:17197185
 |  
                  |  |  
                  | 4. Ambros, V. (2004) The functions of animal microRNAs. Nature 
                  431: 350–355. http://dx.doi.org/10.1038/nature02871
 PMid:15372042
 |  
                  |  |  
                  | 5. Rottiers, V. and Näär, A. M. (2012) MicroRNAs in metabolism 
                  and metabolic disorders. Nat Rev Mol Cell Biol. 13(4):239-50. http://dx.doi.org/10.1038/nrm3313
 PMid:22436747
 |  
                  |  |  
                  | 6. Bushati, N. and Cohen, S. M. (2007) microRNA functions. 
                  Annu. Rev.Cell Dev. Biol. 23, 175–205. http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406
 PMid:17506695
 |  
                  |  |  
                  | 7. Lin, S. L., Miller, J. D. and Ying, S. Y. (2006) Intronic 
                  MicroRNA (miRNA). J Biomed Biotechnol. 26818. PMid:17057362 PMCid:PMC1559912
 |  
                  |  |  
                  | 8. Xiao, C. and Rajewsky, K. (2009) MicroRNA control in the 
                  immune system: basic principles. Cell 136: 26-36. http://dx.doi.org/10.1016/j.cell.2008.12.027
 PMid:19135886
 |  
                  |  |  
                  | 9. Berezikov, E. (2011) Evolution of microRNA diversity and 
                  regulation in animals. Nat Rev Genet. 12(12):846-60. http://dx.doi.org/10.1038/nrg3079
 PMid:22094948
 |  
                  |  |  
                  | 10. Bartel, D. P. (2004) MicroRNAs: Genomics, Biogenesis, 
                  Mechanism, and Function. Cell 116 (2): 281 - 297. http://dx.doi.org/10.1016/S0092-8674(04)00045-5
 |  
                  |  |  
                  | 11. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993) The C. 
                  elegans heterochronic gene lin-4 encodes small RNAs with 
                  antisense complementarity to lin-14. Cell 75 (5):843 - 854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y
 |  
                  |  |  
                  | 12. Burnside, J. and Morgan, R. (2011) Emerging roles of 
                  chicken and viral microRNAs in avian disease. BMC Proc. 5 
                  Suppl 4:S2. |  
                  |  |  
                  | 13. Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., 
                  Sander, C., Grässer, F. A., van Dyk, L. F., Ho, C. K., Shuman, 
                  S., Chien, M., Russo, J. J., Ju, J., Randall, G., Lindenbach, 
                  B. D., Rice, C. M., Simon, V., Ho, D. D., Zavolan, M., Tuschl, 
                  T. (2005) Identification of microRNAs of the herpesvirus 
                  family. Nat. Methods 2(4):269-76. http://dx.doi.org/10.1038/nmeth746
 PMid:15782219
 |  
                  |  |  
                  | 14. O'Connell, R. M., Rao, D. S., and Baltimore, D. (2012) 
                  microRNA regulation of inflammatory responses. Annu Rev 
                  Immunol. 30:295-312. http://dx.doi.org/10.1146/annurev-immunol-020711-075013
 PMid:22224773
 |  
                  |  |  
                  | 15. Friedman, R. C., Farh, K.K., Burge, C. B., Bartel, D. P. 
                  (2009) Most mammalian mRNAs are conserved targets of microRNAs. 
                  Genome Research; 19:92-105. http://dx.doi.org/10.1101/gr.082701.108
 PMid:18955434 PMCid:PMC2612969
 |  
                  |  |  
                  | 16. Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. 
                  L., Thomson, A. M., Lim, B., Rigoutsos, I. (2006) A pattern- 
                  based method for the identification of MicroRNA binding sites 
                  and their corresponding heteroduplexes. Cell 126: 1203–1217. http://dx.doi.org/10.1016/j.cell.2006.07.031
 PMid:16990141
 |  
                  |  |  
                  | 17. Huntzinger, E. and Izaurralde, E. (2011) Gene silencing by 
                  microRNAs: contributions of translational repression and mRNA 
                  decay. Nat Rev Genet. (2):99-110. http://dx.doi.org/10.1038/nrg2936
 PMid:21245828
 |  
                  |  |  
                  | 18. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. 
                  (2002) MicroRNA maturation: stepwise processing and 
                  subcellular localization. EMBO 21 (17):4663 - 4670. http://dx.doi.org/10.1093/emboj/cdf476
 PMCid:PMC126204
 |  
                  |  |  
                  | 19. Nam, J. W., Shin, K. R., Han, J., Lee, Y., Kim, V. N., 
                  Zhang, B. T. (2005) Human microRNA prediction through a 
                  probabilistic co-learning model of sequence and structure. 
                  Nucleic Acids Res. 33(11) 3570-3581. http://dx.doi.org/10.1093/nar/gki668
 PMid:15987789 PMCid:PMC1159118
 |  
                  |  |  
                  | 20. McDaneld, T. G. (2009) MicroRNA: mechanism of gene 
                  regulation and application to livestock. Journal of animal 
                  science 87:E21-E28. http://dx.doi.org/10.2527/jas.2008-1303
 PMid:18791136
 |  
                  |  |  
                  | 21. Griffiths-Jones, S., Grocock, R. J., Dongen, S.V., 
                  Bateman, A. and Enright, A. J. (2005) miRBase: microRNA 
                  sequences, targets and gene nomenclature. Nucleic Acids 
                  Research 34 (suppl 1): D140-D144. http://dx.doi.org/10.1093/nar/gkj112
 PMid:16381832 PMCid:PMC1347474
 |  
                  |  |  
                  | 22. Jackson, R. J., and Standart, N. (2007) How do microRNAs 
                  regulate gene expression? Sci. STKE 367: re1. http://dx.doi.org/10.1126/stke.3672007re1
 PMid:17200520
 |  
                  |  |  
                  | 23. Buchan, J. R., and Parker, R. (2007) The two faces of 
                  miRNA. Science 318:1877–1878. http://dx.doi.org/10.1126/science.1152623
 PMid:18096794
 |  
                  |  |  
                  | 24. Shyu, A. B., Wilkinson, M. F., Hoof, A.V. (2008). 
                  Messenger RNA regulation: To translate or to degrade. EMBO J. 
                  27:471–481. http://dx.doi.org/10.1038/sj.emboj.7601977
 PMid:18256698 PMCid:PMC2241649
 |  
                  |  |  
                  | 25. Wu, L., Fan, J., Belasco, J.G. (2006) MicroRNA direct 
                  rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103: 
                  4034–4039. http://dx.doi.org/10.1073/pnas.0510928103
 PMid:16495412 PMCid:PMC1449641
 |  
                  |  |  
                  | 26. Thermann, R., and Hentze, M. W. (2007) Drosophila miR2 
                  induces pseudo-polysomes and inhibits translation initiation. 
                  Nature 447:875–878. http://dx.doi.org/10.1038/nature05878
 PMid:17507927
 |  
                  |  |  
                  | 27. Kiriakidou, M., Tan, G. S., Lamprinaki, S., Planell-Saguer, 
                  M. D., Nelson, P. T., Mourelatos, W. (2007) An mRNA m7G cap 
                  binding-like motif within human Ago2 represses translation. 
                  Cell 129:1141–1151. http://dx.doi.org/10.1016/j.cell.2007.05.016
 PMid:17524464
 |  
                  |  |  
                  | 28. Chan, S. P., and Slack, F. J. (2006) microRNA-mediated 
                  silencing inside P-bodies. RNA Biol. 3:97–100. http://dx.doi.org/10.4161/rna.3.3.3499
 PMid:17179742
 |  
                  |  |  
                  | 29. Yoon, S., and Micheli, G. D. (2006) Computational 
                  identification of microRNAs and their targets. Birth Defects 
                  Research Part C: Embryo Today: Reviews 78 (2):118-128. http://dx.doi.org/10.1002/bdrc.20067
 PMid:16847881
 |  
                  |  |  
                  | 30. Maziere, P. and Enright, A. J. (2007) Prediction of 
                  microRNA targets. Drug Discovery Today 12 (11):452 – 458. http://dx.doi.org/10.1016/j.drudis.2007.04.002
 PMid:17532529
 |  
                  |  |  
                  | 31. Bartel, D. P. (2009) MicroRNAs: target recognition and 
                  regulatory functions. Cell. 136: 215-233. http://dx.doi.org/10.1016/j.cell.2009.01.002
 PMid:19167326
 |  
                  |  |  
                  | 32. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., & Li, T. 
                  (2009) miRecords: an integrated resource for microRNA–target 
                  interactions. Nucleic Acids Research 37:D105–D110. http://dx.doi.org/10.1093/nar/gkn851
 PMid:18996891 PMCid:PMC2686554
 |  
                  |  |  
                  | 33. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and 
                  Segal, E. (2007) The role of site accessibility in microRNA 
                  target recognition. Nat Genet. 39: 1278-1284. http://dx.doi.org/10.1038/ng2135
 PMid:17893677
 |  
                  |  |  
                  | 34. Hofacker, I. L. (2007) How microRNAs choose their targets. 
                  Nat Genet. 39: 1191-1192. http://dx.doi.org/10.1038/ng1007-1191
 PMid:17898777
 |  
                  |  |  
                  | 35. Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) 
                  Conserved seed pairing, often flanked by adenosines, indicates 
                  that thousands of human genes are microRNA targets. Cell; 
                  120(1): 15-20. http://dx.doi.org/10.1016/j.cell.2004.12.035
 PMid:15652477
 |  
                  |  |  
                  | 36. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, 
                  P., Lim, L.P., and Bartel, D.P. (2007) MicroRNA targeting 
                  specificity in mammals: determinants beyond seed pairing. Mol. 
                  Cell 27: 91–105. http://dx.doi.org/10.1016/j.molcel.2007.06.017
 PMid:17612493
 |  
                  |  |  
                  | 37. Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., 
                  Yekta, S., Rhoades, M.W., Burge, C.B. and Bartel, D.P. (2003) 
                  The microRNAs of Caenorhabditis elegans. Genes & Dev., 17: 
                  991–1008. http://dx.doi.org/10.1101/gad.1074403
 PMid:12672692 PMCid:PMC196042
 |  
                  |  |  
                  | 38. Bernhart, S. H., Tafer, H., Mückstein, U., Flamm, C., 
                  Stadler, P. F and Hofacker, I. L. (2006) Partition function 
                  and base pairing probabilities of RNA heterodimers. Algorithms 
                  Mol Biol. 1(1):3. http://dx.doi.org/10.1186/1748-7188-1-3
 PMid:16722605 PMCid:PMC1459172
 |  
                  |  |  
                  | 39. Lewis, B. P., Shih, I., Jones-Rhoades, M. W., Bartel, D. 
                  P. and Burge, C. B. (2003) Prediction of Mammalian MicroRNA 
                  Targets. Cell, 115(7), 787-798. http://dx.doi.org/10.1016/S0092-8674(03)01018-3
 |  
                  |  |  
                  | 40. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C. 
                  and Marks, D. S. (2004) MicroRNA targets in Drosophila. Genome 
                  Biol. 5(1), 1. http://dx.doi.org/10.1186/gb-2003-5-1-r1
 PMid:14709173
 |  
                  |  |  
                  | 41. Wang, X. (2008) miRDB: a microRNA target prediction and 
                  functional annotation database with a wiki interface. RNA 14 
                  (6), 1012-1017. http://dx.doi.org/10.1261/rna.965408
 PMid:18426918 PMCid:PMC2390791
 |  
                  |  |  
                  | 42. Krek, A., GrÄun, D., Poy, M. N., Wolf, R., Rosenberg, L., 
                  Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. 
                  C. and Stoffel, M. (2005) Combinatorial microRNA target 
                  predictions. Nat. Genet. 37, 495-500. http://dx.doi.org/10.1038/ng1536
 PMid:15806104
 |  
                  |  |  
                  | 43. Kim, S. K., Nam, J. W., Rhee, J. K., Lee, W. J. and Zhang, 
                  B. T. (2006) miTar- get: microRNA target gene prediction using 
                  a support vector ma- chine. BMC Bioinform., 7(1), 411. http://dx.doi.org/10.1186/1471-2105-7-411
 PMid:16978421 PMCid:PMC1594580
 |  
                  |  |  
                  | 44. Yue, D., Liu, H. and Huang, Y. (2009) Survey of 
                  Computational Algorithms for MicroRNA Target Prediction. 
                  Current Genomics, 10, 478-492. http://dx.doi.org/10.2174/138920209789208219
 PMid:20436875 PMCid:PMC2808675
 |  
                  |  |  
                  | 45. Long, J. M. and Lahiri, D. K. (2012) Advances in microrna 
                  experimental approaches to study physiological regulation of 
                  gene products implicated in cns disorders. Exp. Neurol., 235: 
                  402-418. http://dx.doi.org/10.1016/j.expneurol.2011.12.043
 PMid:22245616
 |  
                  |  |  
                  | 46. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., 
                  Khanin, R. and Rajewsky, N. (2008) Widespread changes in 
                  protein synthesis induced by microRNAs. Nature. 455: 58-63. http://dx.doi.org/10.1038/nature07228
 PMid:18668040
 |  
                  |  |  
                  | 47. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., 
                  Epstein, E. J., Macmenamin, P., da Piedade, I., Gunsalus, K. 
                  C., Stoffel, M. and Rajewsky, N. (2005) Combinatorial microRNA 
                  target predictions. Nat Genet. 37: 495-500. http://dx.doi.org/10.1038/ng1536
 PMid:15806104
 |  
                  |  |  
                  | 48. Rehmsmeier, M., Steffen, P., Chsmann, M. H. and Giegerich, 
                  R. (2004) Fast and effective prediction of microRNA/target 
                  duplexes. RNA 10:1507–1517. http://dx.doi.org/10.1261/rna.5248604
 PMid:15383676 PMCid:PMC1370637
 |  |  |