|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research (Published
online : 03-09-2013)
21. Antioxidative effect of yak milk caseinates hydrolyzed with three
different proteases - Santosh Kumar, Vikrant Singh Chouhan, Ashwani
Sanghi and Udai Vir Singh Teotia
Veterinary World, 6(10): 799-802
doi:
10.14202/vetworld.2013.799-802
Abstract
Aim: Yak milk is a type of
milk that people are less familiar with due to its remote
geographical location which may have significant effects on
composition, microbiota and hydrolytic outcome. Present work was
designed with the aim to evaluate the antioxidative effect of
peptides derived from yak milk caseinate on hydrolysis with three
different proteases.
Materials and Methods: In this investigation Yak milk
casein was hydrolyzed by three commercially available proteases (Trypsin,
Pepsin and chymotrypsin). These hydrolysates collected at
different hydrolysis times (30 min, 60 min, 90 min, 120 min, 150
min, 180 min, 210 min, 240 min, 270 min, 300 min, 330 min and 360
min) were assayed for their antioxidant activity with respect to
the effect of incubation period. Hydrolysates obtained at 240 min
hydrolysis showed the highest antioxidant activity.
Results: Among all the enzyme hydrolysates, the tryptic
hydrolysates showed highest antioxidant activity followed by
chymotryptic hydrolysates. Further, the peptide samples showing
highest activity were subjected to RP-HPLC for their partial
characterization. Tryptic and peptic hydrolysates produced peaks
mainly in the region of hydrophillic solvent indicating the
presence of hydrophillic peptides/peptides.
Conclusion: The results indicated that yak milk casein
could be a resource to generate antioxidative peptides and be used
as multifunctional active ingredients for many value-added
functional foods as well as a traditional food protein.
Key words: antioxidant, hydrolysates, bioactive peptide,
hydrophilic, casein
References
1. FitzGerald, R.J., Murray, B.A. and Walsh, D.J. (2004)
Hypotensive peptides from milk proteins. J Nutr., 134:
980S–988S.
PMid:15051858 |
|
2. Haque, E. and Chand, R. (2008) Antihypertensive and
antimicrobial bioactive peptides from milk proteins. Eur Food
Res Technol., 227: 7–15.
http://dx.doi.org/10.1007/s00217-007-0689-6 |
|
3. Sarmadi, B.H. and Ismail, A. (2008) Antioxidative peptides
from food proteins: a review. Peptides., 31: 1949–1956.
http://dx.doi.org/10.1016/j.peptides.2010.06.020
PMid:20600423 |
|
4. Silva, S.V. and Malcata, F.X. (2005) Casein as source of
bioactive peptides. Int Dairy J., 15: 1–15.
http://dx.doi.org/10.1016/j.idairyj.2004.04.009 |
|
5. Korhonen, H. (2009) Milk-derived bioactive peptides: from
science to applications. J Func Foods., 1: 177–187.
http://dx.doi.org/10.1016/j.jff.2009.01.007 |
|
6. Korhonen, H., and Pihlanto, A. (2006) Bioactive peptides:
Production and functionality. Int Dairy J., 16: 945–960.
http://dx.doi.org/10.1016/j.idairyj.2005.10.012 |
|
7. Phelan, M., Aherne, A., FitzGerald, R.J. and O'Brien, N.M.
(2009) Casein-derived bioactive peptides: biological effects,
industrial uses, safety aspects and regulatory status. Int
Dairy J., 19: 643–654.
http://dx.doi.org/10.1016/j.idairyj.2009.06.001 |
|
8. Minervini, F., Algaron, F., Rizzello, C.G., Fox, P.F.,
Monnet, V. and Gobbetti, M. (2003) Angiotensin I-converting-
enzyme-inhibitory and antibacterial peptides from
Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of
milk from six species. Appl Environ Microbiol., 69: 5297–5305.
http://dx.doi.org/10.1128/AEM.69.9.5297-5305.2003
PMid:12957917 PMCid:PMC194939 |
|
9. Benkerroum, N. (2010) Antimicrobial peptides generated from
milk proteins: a survey and prospects for application in the
food industry. A review. Int J Dairy Technol., 63: 320– 338.
http://dx.doi.org/10.1111/j.1471-0307.2010.00584.x |
|
10. Lowry. O.H., Rosebrough, N.J., Farr, A.L. and Randall,
R.J. (1951) Protein measurement with folin-phenol reagent. J.
Biol. Chemistry., 193: 265-275.
PMid:14907713 |
|
11. Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y. and Itoh,
T. (1998) Structural analysis of new antihypertensive peptide
by proteinase K digestion. J.Dairy Sci., 81:3131-3138.
http://dx.doi.org/10.3168/jds.S0022-0302(98)75878-3 |
|
12. Pihlanto-Leppala, A., Koskinen, P., Piilola, K., Tupasela,
T. and Korhonen, H. (2000) Angiotensin -1 converting enzyme
inhibitory properties of whey protein digest: Concentration
and characterization of active peptide. J.Dairy Res.,
67:53-64.
http://dx.doi.org/10.1017/S0022029999003982
PMid:10717843 |
|
13. Hull, M.E. (1947) Studies on Milk Proteins. II.
Colorimetric Determination of the Partial Hydrolysis of the
Proteins in Milk. J. Diary Sci., 30 (11): 881-884.
http://dx.doi.org/10.3168/jds.S0022-0302(47)92412-0 |
|
14. Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995)
Use of free radical method to evaluate antioxidant activity.
LWT Food Sci Technol., 28: 25–30.
http://dx.doi.org/10.1016/S0023-6438(95)80008-5 |
|
15. Hernandez-Ledesma, B., Recio, I., Ramos, M. and Amigo, L.
(2002) Preparation of ovine and caprine ß-lactoglobulin
hydrolysates with ACE inhibitory activity: Identification of
active peptides from caprine ß-lactoglobulin hydrolyzed with
thermolysin. Int. Dairy J., 12: 805-812.
http://dx.doi.org/10.1016/S0958-6946(02)00080-8 |
|
16. Sarmadi, B.H. and Ismail, A. (2010) Antioxidative peptides
from food proteins: a review. Peptides., 31: 1949–1956.
http://dx.doi.org/10.1016/j.peptides.2010.06.020
PMid:20600423 |
|
17. Hogan, S., Zhang, L., Li, J., Wang, H. and Zhou, K. (2009)
Development of antioxidant rich peptides from milk protein by
microbial proteases and analysis of their effects on lipid
peroxidation in cooked beef. Food Chem., 117: 438–443.
http://dx.doi.org/10.1016/j.foodchem.2009.04.040 |
|
18. Zhang, L., Li, J. and Zhou, K. (2010) Chelating and
radical scavenging activities of soy protein hydrolysates
prepared from microbial proteases and their effect on meat
lipid peroxidation. Bioresour Technol., 101: 2084–2089.
http://dx.doi.org/10.1016/j.biortech.2009.11.078
PMid:20015640 |
|
19. Grosclaude, F., Mahé, M.F. and Mercier, J.C. (1974)
Comparaison du polymorphisme génétique des lactopro- téines du
zébu et des bovins. Annales de Génétique et de Sélection
Animale, 6: 305-329.
http://dx.doi.org/10.1186/1297-9686-6-3-305
PMid:22896451 PMCid:PMC2725079 |
|
20. Grosclaude, F., Mahé, M.F., Mercier, J.C., Bonnemaire, J.
and Teissier, J.H. (1976b) Polymorphisme des lactoprotéines de
bovinés népalais. II. Polymorphisme des caséines as- mineures;
le locus as2-Cn est-il lié aux loci as1-Cn, ß-Cn et - ?Cn?
Annales de Génétique et de Sélection Animale 8(4): 481–491.
http://dx.doi.org/10.1186/1297-9686-8-4-481
PMid:22896506 PMCid:PMC2724574 |
|
21. Sulimova, G.E., Badagueva, IuN., Udina, I.G. (1996)
Polymorphism of the kappa-casein gene in populations of the
subfamily Bovinae. Genetika. 32 (11): 1576-1582.
PMid:9119217 |
|
22. Mao, X.Y., Cheng, X., Wang, X. and Wu, S.J. (2011) Free-
radical-scavenging and anti-inflammatory effect of yak milk
casein before and after enzymatic hydrolysis. Food Chem., 126:
484–490.
http://dx.doi.org/10.1016/j.foodchem.2010.11.025 |
|
23. Chang, C.Y., Wu, K.C. and Chiang, S.H. (2007) Antioxidant
properties and protein compositions of porcine haemoglobin
hydrolysates. Food Chem., 100: 1537–1543.
http://dx.doi.org/10.1016/j.foodchem.2005.12.019 |
|
24. Rival, S.G., Boeriu, C.G. and Wichers, H.J. (2001) Caseins
and casein hydrolysates. 2. Antioxidative properties and
relevance to lipoxygenase inhibition. J Agric Food Chem., 49:
295–302.
http://dx.doi.org/10.1021/jf0003911
PMid:11170591 |
|
25. Saiga, A., Tanabe, S. and Nishimiura, T. (2003)
Antioxidant activity of peptides obtained from
porcinemyofibrillar proteins by protease treatment. J Agric
Food Chem. 51:3661–3667.
http://dx.doi.org/10.1021/jf021156g
PMid:12769542 |
|
|