|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online : 28-07-2013)
22.
Protective role of Nigella sativa against
experimentally induced type-II diabetic nuclear damage in Wistar rats -
T. J. Sheikh,
D. V. Joshi, B. J. Patel and C. M. Modi
Vet World. 2013; 6(9): 698-702
doi:
10.14202/vetworld.2013.698-702
Abstract
Aim:
To identify the anti-mutagenic effect of Nigella sativa
on the experimentally induced chronic diabetes (type – II) in
Wistar rats.
Materials and Methods: The anti-mutagenic effect was evaluated
in Nigella sativa treated diabetic rats against the
streptozotocin - nicotinamide (STZ-NA) (at a dose rate of 45-110
i.p mg/kg b.wt for 90 days) induced type-II diabetes mellitus
using bone marrow micronucleus tests. The antioxidant status was
tested by estimating the serum levels of lipid peroxidation and
superoxide dismutase.
Results: Our results indicated that diabetic rats treated with
Nigella sativa decreased the frequency of micronuclei in
the erythrocytes of bone marrow (P < 0.05) and enhanced the
antioxidant status (P < 0.05) in the treated diabetic rats
as compared to controls.
Conclusion: The observations indicated that the diabetic
patients are more prone to cell mutations which are related to the
level of cellular oxidative status and it could be reduced by
Nigella sativa.
Keywords: antioxidant, diabetes, micronucleus test,
Nigella sativa, plant extract
References
1. American Diabetes Association Diagnosis and classification
of diabetes mellitus. (2010) J Diabetes Care. 33: S62–9. |
|
2. Oktayoglu, G.S, Basaraner, H., Yanardag, R., Bolkent, S.
(2009) The effects of combined treatment of antioxidants on
the liver injury in STZ diabetic rats. Diges Dis Sci. 54:
538–46.
http://dx.doi.org/10.1007/s10620-008-0381-0
PMid:18712602 |
|
3. American Diabetes Association Diagnosis and classification
of diabetes mellitus. (2010) Diabetes Care. 33: S62-10. |
|
4. Mohan, V., Sandeep, S., Deepa, R., Shah, B. and Varghese,
C. (2007) Epidemiology of type 2 diabetes: Indian scenario.
Indian J. Med. Res., 125: 217–230.
PMid:17496352 |
|
5. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M.
(2012) Reactive Oxygen Species, Oxidative Damage, and
Antioxidative Defense Mechanism in Plants under Stressful
Conditions. Journal of Botany. Hindawi Publishing Corporation.
Article ID 217037. |
|
6. Blasiak, J., Arabski, M., Krupa, R., Wozniak, K., Zadrozny,
M., Kasznicki, J., Zurawska, M. and Drzewoski, J. (2009) DNA
damage and repair in type 2 diabetes mellitus. Mutat Res, 554:
297.
http://dx.doi.org/10.1016/j.mrfmmm.2004.05.011
PMid:15450427 |
|
7. Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti,
M. and Hillaire-Buys, D. (1998) Experimental NIDDM:
Development of new model in adult rats administered
streptozotocin and nicotinamide. Diabetes. 47: 224.
http://dx.doi.org/10.2337/diabetes.47.2.224
PMid:9519717 |
|
8. Simona, S., Yves, G., Chakradhar, V., Hanna, E.A. and Samy,
L.H. (2009) Mechanism of oxidative DNA damage in diabetes:
tuberin inactivation and down regulation of DNA repair enzyme
8-oxo-7, 8-dihydro-20-deoxyguanosine- DNA glycosylase.
Diabetes. 57: 2626–2636.
http://dx.doi.org/10.2337/db07-1579
PMid:18599524 PMCid:PMC2551671 |
|
9. Devi, K., Rabbani, S. I., and Khanam, S. (2009). Inhibitory
effect of Glimepiride on nicotinamide-streptozotocin induced
nuclear damages and sperm abnormality in diabetic Wistar rats.
Indian J. Exp. Biol. 47 (10): 804-810.
PMid:20112807 |
|
10. Jenssen, C. and Ramel, C. (1980) The micronucleus test as
a part of a short-term mutagenicity test program for the
prediction of carcinogenicity evaluated by 143 agents test.
Mutat. Res. 75: 191–202.
http://dx.doi.org/10.1016/0165-1110(80)90014-7 |
|
11. Chauhan, L. K. S., Pant, N., Gupta, S. K. and Srivastava,
S. P. (2000) Induction of chromosome aberrations, micronucleus
formation and sperm abnormalities in mouse following
carbafuran exposure. Mutat Res. 465: 123.
http://dx.doi.org/10.1016/S1383-5718(99)00219-3 |
|
12. Rabbani, S.I., Devi, K., Khanam, S., (2009) Inhibitory
effect of glimepiride on the nicotinamide–streptozotocin
induced nuclear damages and sperm abnormalities in diabetic
Wistar rats. Indian J. Exp. Biol. 47 (10): 804–810.
PMid:20112807 |
|
13. Gazioano, T. A., Galea, G. and Reddy, K. S. (2007) Scaling
up interventions for chronic disease prevention: the evidence.
Lancet. 370 (9603): 1939–1946.
http://dx.doi.org/10.1016/S0140-6736(07)61697-3 |
|
14. Kanter, M. (2008) Effects of Nigella sativa and its major
constituent, thymoquinone on sciatic nerves in experimental
diabetic neuropathy. Neurochem Res. 33(1):87-96.
http://dx.doi.org/10.1007/s11064-007-9419-5
PMid:17713854 |
|
15. Kasim, S. H., Al-Mayah, Nada M. Al-Bashir and Bader M. Al-Azzaw.
(2012) In Vivo Efficacy of Nigella Sativa Aqueous Seed Extract
Against Metacestode of Echinococcus Granulosus. Med J Babylon.
9 (1): 140-151. |
|
16. MacGregor, J. T., Heddle, J. A., Hite, M., Margolin, B. H,
Ramel, C., Salamone, M.F., Tice, R.R. and Wild, D. (1987)
Guidelines for the conduct of micronucleus assays in mammalian
bone marrow erythrocytes. Mutat Res. 189 (2): 103–12.
http://dx.doi.org/10.1016/0165-1218(87)90016-4 |
|
17. Shafiq-Ur-Rehman. (1984) Lead-induced regional lipid
peroxidation in brain. Toxicol. Letters. 21: 333-337.
http://dx.doi.org/10.1016/0378-4274(84)90093-6 |
|
18. Madesh, M and Balasubramanian, K. A. (1998) Microtiter
plate assay for superoxide dismutase using MTT reduction by
superoxide. Indian J. Biochem. Biophys. 35 (3):184-188.
PMid:9803669 |
|
19. Piconi, L., Quagliaro, L. and Ceriello, A. (2003)
Oxidative stress in diabetes. Clin. Chem. Lab. Med.
41:1144-49.
http://dx.doi.org/10.1515/CCLM.2003.177
PMid:14598863 |
|
20. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T.,
Mazur, M. and Telser, J. (2007) Free radicals and antioxidants
in normal physiological functions and human disease. The Int J
Biochem. Cell Biol. 39:44-84.
http://dx.doi.org/10.1016/j.biocel.2006.07.001
PMid:16978905 |
|
21. Yasui, Y., Kim, M. and Tanaka, T. (2008). PPAR ligands for
cancer chemoprevention. PPAR Research. Article ID: 548919.
1-10. |
|
22. Garcia-Ramirez, M., Francisco, G., Garcia-Arumi, F.,
Hernandez, C., Martinez, R., Andreu, A. L., et al. (2008)
Mitochondrial DNA oxidation and manganese superoxide dismutase
activity in peripheral blood mononuclear cells from type-2
diabetic patients. Diabetes Metab. 34:117-24.
http://dx.doi.org/10.1016/j.diabet.2007.10.011
PMid:18291700 |
|
23. Schettler, V., Wieland E., Verwiebe, R., Schuff-Werner,
P., Scheler, F. and Oellerich, M. (1994) Plasma lipids are not
oxidized during hemodialysis. Nephron. 67: 42-47.
http://dx.doi.org/10.1159/000187886
PMid:8052366 |
|
24. Baynes, J.W. (1991) Role of oxidative stress in
development of complications in diabetes. Diabetes.
40:405–412.
http://dx.doi.org/10.2337/diabetes.40.4.405
PMid:2010041 |
|
25. Ishikawa, Y., Watanabe, K., Takeno, H. and Tani, T. (1998)
Effect of the novel oral antidiabetic agent HQL-975 on oral
glucose and lipid metabolism in diabetic db/db mice. Arzneim
Forsch/Drug Res. 48: 245–250. |
|
26. Al-Awadi, F. M., Fatania, H.and Shamte, U. (1991) The
effect of a plant mixture extract on liver gluconeogenesis in
streptozotocin induced diabetic rats. Diabetes Res. 18: 163-
168.
PMid:1842751 |
|
|