Veterinary World

 

ISSN (Online): 2231-0916
 

 Home


 Editorial board


 Instructions for authors


 Reviewer guideline


 Open access policy


 Archives


 FAQ


 

 

Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.


Research (Published online : 28-07-2013)

22. Protective role of Nigella sativa against experimentally induced type-II diabetic nuclear damage in Wistar rats - T. J. Sheikh, D. V. Joshi, B. J. Patel and C. M. Modi

Vet World. 2013; 6(9): 698-702
 



Aim: To identify the anti-mutagenic effect of Nigella sativa on the experimentally induced chronic diabetes (type – II) in Wistar rats.

Materials and Methods: The anti-mutagenic effect was evaluated in Nigella sativa treated diabetic rats against the streptozotocin - nicotinamide (STZ-NA) (at a dose rate of 45-110 i.p mg/kg b.wt for 90 days) induced type-II diabetes mellitus using bone marrow micronucleus tests. The antioxidant status was tested by estimating the serum levels of lipid peroxidation and superoxide dismutase.

Results: Our results indicated that diabetic rats treated with Nigella sativa decreased the frequency of micronuclei in the erythrocytes of bone marrow (P < 0.05) and enhanced the antioxidant status (P < 0.05) in the treated diabetic rats as compared to controls.

Conclusion: The observations indicated that the diabetic patients are more prone to cell mutations which are related to the level of cellular oxidative status and it could be reduced by Nigella sativa.

Keywords: antioxidant, diabetes, micronucleus test, Nigella sativa, plant extract


References


1. American Diabetes Association Diagnosis and classification of diabetes mellitus. (2010) J Diabetes Care. 33: S62–9.
 
2. Oktayoglu, G.S, Basaraner, H., Yanardag, R., Bolkent, S. (2009) The effects of combined treatment of antioxidants on the liver injury in STZ diabetic rats. Diges Dis Sci. 54: 538–46.
http://dx.doi.org/10.1007/s10620-008-0381-0
PMid:18712602
 
3. American Diabetes Association Diagnosis and classification of diabetes mellitus. (2010) Diabetes Care. 33: S62-10.
 
4. Mohan, V., Sandeep, S., Deepa, R., Shah, B. and Varghese, C. (2007) Epidemiology of type 2 diabetes: Indian scenario. Indian J. Med. Res., 125: 217–230.
PMid:17496352
 
5. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M. (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany. Hindawi Publishing Corporation. Article ID 217037.
 
6. Blasiak, J., Arabski, M., Krupa, R., Wozniak, K., Zadrozny, M., Kasznicki, J., Zurawska, M. and Drzewoski, J. (2009) DNA damage and repair in type 2 diabetes mellitus. Mutat Res, 554: 297.
http://dx.doi.org/10.1016/j.mrfmmm.2004.05.011
PMid:15450427
 
7. Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M. and Hillaire-Buys, D. (1998) Experimental NIDDM: Development of new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 47: 224.
http://dx.doi.org/10.2337/diabetes.47.2.224
PMid:9519717
 
8. Simona, S., Yves, G., Chakradhar, V., Hanna, E.A. and Samy, L.H. (2009) Mechanism of oxidative DNA damage in diabetes: tuberin inactivation and down regulation of DNA repair enzyme 8-oxo-7, 8-dihydro-20-deoxyguanosine- DNA glycosylase. Diabetes. 57: 2626–2636.
http://dx.doi.org/10.2337/db07-1579
PMid:18599524 PMCid:PMC2551671
 
9. Devi, K., Rabbani, S. I., and Khanam, S. (2009). Inhibitory effect of Glimepiride on nicotinamide-streptozotocin induced nuclear damages and sperm abnormality in diabetic Wistar rats. Indian J. Exp. Biol. 47 (10): 804-810.
PMid:20112807
 
10. Jenssen, C. and Ramel, C. (1980) The micronucleus test as a part of a short-term mutagenicity test program for the prediction of carcinogenicity evaluated by 143 agents test. Mutat. Res. 75: 191–202.
http://dx.doi.org/10.1016/0165-1110(80)90014-7
 
11. Chauhan, L. K. S., Pant, N., Gupta, S. K. and Srivastava, S. P. (2000) Induction of chromosome aberrations, micronucleus formation and sperm abnormalities in mouse following carbafuran exposure. Mutat Res. 465: 123.
http://dx.doi.org/10.1016/S1383-5718(99)00219-3
 
12. Rabbani, S.I., Devi, K., Khanam, S., (2009) Inhibitory effect of glimepiride on the nicotinamide–streptozotocin induced nuclear damages and sperm abnormalities in diabetic Wistar rats. Indian J. Exp. Biol. 47 (10): 804–810.
PMid:20112807
 
13. Gazioano, T. A., Galea, G. and Reddy, K. S. (2007) Scaling up interventions for chronic disease prevention: the evidence. Lancet. 370 (9603): 1939–1946.
http://dx.doi.org/10.1016/S0140-6736(07)61697-3
 
14. Kanter, M. (2008) Effects of Nigella sativa and its major constituent, thymoquinone on sciatic nerves in experimental diabetic neuropathy. Neurochem Res. 33(1):87-96.
http://dx.doi.org/10.1007/s11064-007-9419-5
PMid:17713854
 
15. Kasim, S. H., Al-Mayah, Nada M. Al-Bashir and Bader M. Al-Azzaw. (2012) In Vivo Efficacy of Nigella Sativa Aqueous Seed Extract Against Metacestode of Echinococcus Granulosus. Med J Babylon. 9 (1): 140-151.
 
16. MacGregor, J. T., Heddle, J. A., Hite, M., Margolin, B. H, Ramel, C., Salamone, M.F., Tice, R.R. and Wild, D. (1987) Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res. 189 (2): 103–12.
http://dx.doi.org/10.1016/0165-1218(87)90016-4
 
17. Shafiq-Ur-Rehman. (1984) Lead-induced regional lipid peroxidation in brain. Toxicol. Letters. 21: 333-337.
http://dx.doi.org/10.1016/0378-4274(84)90093-6
 
18. Madesh, M and Balasubramanian, K. A. (1998) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J. Biochem. Biophys. 35 (3):184-188.
PMid:9803669
 
19. Piconi, L., Quagliaro, L. and Ceriello, A. (2003) Oxidative stress in diabetes. Clin. Chem. Lab. Med. 41:1144-49.
http://dx.doi.org/10.1515/CCLM.2003.177
PMid:14598863
 
20. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. and Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. The Int J Biochem. Cell Biol. 39:44-84.
http://dx.doi.org/10.1016/j.biocel.2006.07.001
PMid:16978905
 
21. Yasui, Y., Kim, M. and Tanaka, T. (2008). PPAR ligands for cancer chemoprevention. PPAR Research. Article ID: 548919. 1-10.
 
22. Garcia-Ramirez, M., Francisco, G., Garcia-Arumi, F., Hernandez, C., Martinez, R., Andreu, A. L., et al. (2008) Mitochondrial DNA oxidation and manganese superoxide dismutase activity in peripheral blood mononuclear cells from type-2 diabetic patients. Diabetes Metab. 34:117-24.
http://dx.doi.org/10.1016/j.diabet.2007.10.011
PMid:18291700
 
23. Schettler, V., Wieland E., Verwiebe, R., Schuff-Werner, P., Scheler, F. and Oellerich, M. (1994) Plasma lipids are not oxidized during hemodialysis. Nephron. 67: 42-47.
http://dx.doi.org/10.1159/000187886
PMid:8052366
 
24. Baynes, J.W. (1991) Role of oxidative stress in development of complications in diabetes. Diabetes. 40:405–412.
http://dx.doi.org/10.2337/diabetes.40.4.405
PMid:2010041
 
25. Ishikawa, Y., Watanabe, K., Takeno, H. and Tani, T. (1998) Effect of the novel oral antidiabetic agent HQL-975 on oral glucose and lipid metabolism in diabetic db/db mice. Arzneim Forsch/Drug Res. 48: 245–250.
 
26. Al-Awadi, F. M., Fatania, H.and Shamte, U. (1991) The effect of a plant mixture extract on liver gluconeogenesis in streptozotocin induced diabetic rats. Diabetes Res. 18: 163- 168.
PMid:1842751