|  | 
              
  
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Review 
(Published 
online: 13-01-2014) 
4. Functional biology of ion channels: a review -
              Subhashree Sarangi, A. P. K. Mahapatra, A. K. Kundu and S. 
MohapatraVeterinary World, 7(1): 13-16
 
  
              
              doi: 
              10.14202/vetworld.2014.13-16 
                
              
              
          
 
              Abstract 
 
              Over the past few decades, a great 
              deal of attention has been focused on discovering the protein 
              partners that form mechano-electrical transduction (MeT) channels 
              in somatic mechanoreceptors. Two classes of ion channel proteins 
              are leading candidates: amiloride-sensitive channel (ASCs) and 
              transient receptor potential (TRP) channel proteins. Here, we 
              surveyed the literature to establish that most, if not all 
              mechanoreceptor neurons in mice express multiple ASC and TRP 
              channel proteins. But, the landscape of ion channel co-expression 
              in mechanoreceptor neurons is only beginning to be mapped. Future 
              work aimed at refining such maps for mammalian mechanoreceptor 
              neurons will be critical for deeper understanding. Also, each of 
              these potential MeT channel subunits operates within a large 
              company of other ion channel actors that increase the complexity, 
              flexibility, and robustness of somatosensory neuron function. 
              Recently, two additional classes of membrane proteins (Piezo and 
              TMC) have been linked to mechano-transduction. This situation is 
              likely to exist in other mechanoreceptor neurons, including those 
              responsible for touch and pain sensation in mammals. Keywords: mechano-electrical transduction (MeT) channels, 
              amiloride-sensitive channels (ASCs), transient receptor potential 
              (TRP) channels, mechanoreceptor neuron, somatosensory neuron
 
 
              References 
 
                
                  | 1. Rieke, F., and Rudd, M.E. (2009) The challenges natural 
                  images pose for visual adaptation. Neuron 64: 605–616. http://dx.doi.org/10.1016/j.neuron.2009.11.028
 PMid:20005818
 |  
                  |  |  
                  | 2. H. S. Vedpathak, P. H. Tank, A. S. Karle, H. K. Mahida, D.O. 
                  Joshi and M. A. Dhami (2009) Pain Management in Veterinary 
                  Patients. Veterinary World, 2(9):360-363 |  
                  |  |  
                  | 3. Shana L. Geffeney and Miriam B. Goodman (2012) How We Feel: 
                  Ion Channel Partnerships that Detect Mechanical Inputs and 
                  Give Rise to Touch and Pain Perception. Neuron Review . 74: 
                  609-619. http://dx.doi.org/10.1016/j.neuron.2012.04.023
 PMid:22632719 PMCid:PMC3371091
 |  
                  |  |  
                  | 4. Smith, E.S.J., Omerba si c, D., Lechner, S.G., Anirudhan, 
                  G., Lapatsina, L., and Lewin, G.R. (2011) The molecular basis 
                  of acid insensitivity in the African naked mole-rat. Science 
                  334: 1557–1560. |  
                  |  |  
                  | 5. William A. Catterall (2010) Ion Channel Voltage Sensors: 
                  Structure, Function, and Pathophysiology. Neuron Review. 67: 
                  915-928. http://dx.doi.org/10.1016/j.neuron.2010.08.021
 PMid:20869590 PMCid:PMC2950829
 |  
                  |  |  
                  | 6. Hodgkin, A.L., and Huxley, A.F. (1952) A quantitative 
                  description of membrane current and its application to 
                  conduction and excitation in nerve. J. Physiol.117: 500–544. PMid:12991237
 |  
                  |  |  
                  | 7. Kuzmenkin, A., Bezanilla, F., and Correa, A.M. (2004) 
                  Gating of the bacterial sodium channel, NaChBac: voltage- 
                  dependent charge movement and gating currents. J. Gen. Physiol. 
                  124: 349–356. http://dx.doi.org/10.1085/jgp.200409139
 PMid:15365092 PMCid:PMC2233907
 |  
                  |  |  
                  | 8. Sato, C., Ueno, Y., Asai, K., Takahashi, K., Sato, M., 
                  Engel, A., and Fujiyoshi, Y. (2001) The voltage-sensitive 
                  sodium channel is a bell-shaped molecule with several 
                  cavities. Nature 409:1047–1051. http://dx.doi.org/10.1038/35059098
 PMid:11234014
 |  
                  |  |  
                  | 9. Long, S.B., Tao, X., Campbell, E.B., and MacKinnon, R. 
                  (2007) Atomic structure of a voltage-dependent K+ channel in a 
                  lipid membrane-like environment. Nature 450: 376–382. http://dx.doi.org/10.1038/nature06265
 PMid:18004376
 |  
                  |  |  
                  | 10. Cohen, L., Gilles, N., Karbat, I., Ilan, N., Gordon, D., 
                  and Gurevitz, M. (2006) Direct evidence that receptor site-4 
                  of sodium channel gating modifiers is not dipped in the 
                  phospholipid bilayer of neuronal membranes. J. Biol. Chem. 
                  281: 20673–20679. http://dx.doi.org/10.1074/jbc.M603212200
 PMid:16720570
 |  
                  |  |  
                  | 11. Schmidt, D., Jiang, Q. X., and MacKinnon, R. (2006) 
                  Phospholipids and the origin of cationic gating charges in 
                  voltage sensors. Nature 444: 775–779. http://dx.doi.org/10.1038/nature05416
 PMid:17136096
 |  
                  |  |  
                  | 12. Adrian, E.D. (1926) The impulses produced by sensory 
                  nerve-endings: Part 4.Impulses from Pain Receptors. J. Physiol. 
                  62: 33–51. PMid:16993827
 |  
                  |  |  
                  | 13. Hunter, S., Jones, P., Mitchell, A., Apweiler, R., 
                  Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., 
                  Burge, S., (2012) InterPro in 2011: new developments in the 
                  family and domain prediction database. Nucleic Acids Res.40 
                  (Database issue), D306–D312. http://dx.doi.org/10.1093/nar/gkr948
 PMid:22096229 PMCid:PMC3245097
 |  
                  |  |  
                  | 14. Gonzales, E.B., Kawate, T., and Gouaux, E. (2009) Pore 
                  architecture and ion sites in acid-sensing ion channels and 
                  P2X receptors. Nature 460: 599–604. http://dx.doi.org/10.1038/nature08218
 PMid:19641589 PMCid:PMC2845979
 |  
                  |  |  
                  | 15. Jasti, J., Furukawa, H., Gonzales, E.B., and Gouaux, E. 
                  (2007) Structure of acid-sensing ion channel 1 at 1.9 A 
                  resolution and low pH. Nature 449: 316–323. http://dx.doi.org/10.1038/nature06163
 PMid:17882215
 |  
                  |  |  
                  | 16. Deval, E., Gasull, X., Noeš l, J., Salinas, M., Baron, A., 
                  Diochot, S., and Lingueglia, E. (2010) Acid-sensing ion 
                  channels (ASICs): pharmacology and implication in pain. 
                  Pharmacol. Ther. 128: 549–558. http://dx.doi.org/10.1016/j.pharmthera.2010.08.006
 PMid:20807551
 |  
                  |  |  
                  | 17. Donier, E., Rugiero, F., Jacob, C., and Wood, J.N. (2008) 
                  Regulation of ASIC activity by ASIC4—new insights into ASIC 
                  channel function revealed by a yeast two-hybrid assay. Eur. J. 
                  Neurosci. 28: 74–86. http://dx.doi.org/10.1111/j.1460-9568.2008.06282.x
 PMid:18662336
 |  
                  |  |  
                  | 18. Hesselager, M., Timmermann, D.B., and Ahring, P.K. (2004) 
                  pH Dependency and desensitization kinetics of heterologously 
                  expressed combinations of acid-sensing ion channel subunits. 
                  J. Biol. Chem. 279: 11006–11015. http://dx.doi.org/10.1074/jbc.M313507200
 PMid:14701823
 |  
                  |  |  
                  | 19. Venkatachalam, K., and Montell, C. (2007) TRP channels. 
                  Annu. Rev.Biochem. 76: 387–417. http://dx.doi.org/10.1146/annurev.biochem.75.103004.142819
 PMid:17579562
 |  
                  |  |  
                  | 20. Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade, 
                  S., Petrus, M.J., Dubin, A.E., and Patapoutian, A. (2010) 
                  Piezo1 and Piezo2 are essential components of distinct 
                  mechanically activated cation channels. Science 330: 55–60. http://dx.doi.org/10.1126/science.1193270
 PMid:20813920 PMCid:PMC3062430
 |  
                  |  |  
                  | 21. Coste, B., Xiao, B., Santos, J.S., Syeda, R., Grandl, J., 
                  Spencer, K.S., Kim, S.E., Schmidt, M., Mathur, J., Dubin, A.E. 
                  (2012) Piezo proteins are pore-forming subunits of 
                  mechanically activated channels. Nature 483: 176–181 http://dx.doi.org/10.1038/nature10812
 PMid:22343900 PMCid:PMC3297710
 |  
                  |  |  
                  | 22. Kawashima, Y., GeŽ leŽ oc, G.S.G., Kurima, K., Labay, V., 
                  Lelli, A., Asai, Y., Makishima, T., Wu, D.K., Della Santina, 
                  C.C., Holt, J.R., and Griffith, A.J. (2011) Mechanotrans- 
                  duction in mouse inner ear hair cells requires transmembrane 
                  channel-like genes 1 and 2. J. Clin. Invest. 121: 4796–4809. http://dx.doi.org/10.1172/JCI60405
 PMid:22105175 PMCid:PMC3223072
 |  
                  |  |  
                  | 23. Kim, S.E., Coste, B., Chadha, A., Cook, B., and 
                  Patapoutian, A. (2012) The role of Drosophila Piezo in 
                  mechanical nociception. Nature 483: 209–212. http://dx.doi.org/10.1038/nature10801
 PMid:22343891 PMCid:PMC3297676
 |  |  |