| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Review 
(Published 
online: 13-01-2015) 
              
              10.   
              
              Heat shock 
              proteins: a therapeutic target worth to consider - 
              Amita Dubey, K. S. Prajapati, 
              Madhu Swamy and V. Pachauri 
              Veterinary World, 8(1): 46-51   
              
   
                
                
doi: 
              10.14202/vetworld.2015.46-51 
                  Amita 
              Dubey: 
              
              Department of Pathology, College of veterinary science & AH, NDVSU, 
              Jabalpur, Madhya Pradesh, India; amiabhishek@rediffmail.com K. S. 
              Prajapati: 
              
              Department of Pathology, College of veterinary science & AH, AAU, 
              Anand, Gujarat, India; kanti_prajapati@yahoo.com Madhu 
              Swamy: 
              
              Department of Pathology, College of veterinary science & AH, NDVSU, 
              Jabalpur, Madhya Pradesh, India; vetpath@rediffmail.com V. 
              Pachauri: 
              
              Krishi Vigyan Kendra, Jawaharlal Nehru Agricultural University, 
              Sagar, Madhya Pradesh, India; dr.vivekinpachauri@gmail.com   
              Received: 08-09-2014, Revised: 20-11-2014, Accepted: 28-11-2014, 
              Published online: 13-01-2015   
              
              
              Corresponding author:
              
              Amita Dubey, e-mail: amiabhishek@rediffmail.com 
 
              Abstract 
 Heat 
              shock proteins (HSPs) are the molecular chaperones, that are not 
              only expressed during the normal growth process of cell cycle 
              consecutively, but also get induced in cells during various stress 
              conditions produced by cellular insult, environmental changes, 
              temperature, infections, tumors etc. According to their molecular 
              weight and functions, HSPs are divided into five major families. 
              HSP90, HSP70, HSP60 and HSP100 are the most studied members of the 
              family. Experimental studies have proved that overexpression 
              and/or inhibition of HSPs play an important role in maintaining 
              the tolerance and cell viability under above-described stress 
              conditions. HSP90 is found to be a promising candidate for the 
              diagnosis, prognosis and treatment of cancer. Similarly, HSP70, 
              HSP60 and small HSPs experimentally and clinically have potential 
              for the treatment of neurodegenerative disease, ischemia, cell 
              death, autoimmunity, graft rejection, etc. In a way, exploring, 
              the cytoprotective and immunoregulatory role of HSPs can open a 
              new avenue for the drug discovery and treatment of critical 
              diseases.  
              Keywords: heat shock protein, heat shock 
              protein 70, heat shock protein 90, stress protein, small heat 
              shock proteins. 
 
              References 
 
                
                  | 1. Ritossa, F. (1962) A new puffing pattern induced by 
                  temperature and DNP in Drosophila., Experientia, 18: 571–-573. http://dx.doi.org/10.1007/BF02172188
 |  
                  |  |  
                  | 2. Schlesinger, M. J. (1990) Heat shock proteins., J. Biol. 
                  Chem., 265(21): 12111-12114. PMid:2197269
 |  
                  |  |  
                  | 3. Hendrick, J.P. and Hartl, F.U. (1993) Molecular chaperone 
                  functions of heat-shock proteins., Annu. Rev. Biochem., 62: 
                  349-384. http://dx.doi.org/10.1146/annurev.bi.62.070193.002025
 PMid:8102520
 |  
                  |  |  
                  | 4. Millar, L.N. and Murrell, G.A.C. (2012) Heat shock proteins 
                  in tendinopathy: Novel molecular regulators., Mediators. 
                  Inflamm., 2012: 436203. http://dx.doi.org/10.1155/2012/436203
 PMid:23258952 PMCid:PMC3507314
 |  
                  |  |  
                  | 5. Bellmann, K., Jaattela, M., Wissing, D., Burkart, V. and 
                  Kolb, H. (1996) Heat shock protein Hsp70 over expression 
                  confers resistance against nitric oxide., FEBS Lett., 
                  391(1-2):185–-188. http://dx.doi.org/10.1016/0014-5793(96)00730-2
 |  
                  |  |  
                  | 6. Calabrese, V., Cornelius, C., Maiolino, L., Luca, M., 
                  Chiaramonte, R., Toscano, M.A., Serra, A. (2010) Oxidative 
                  stress redox homeostasis and cellular stress response in 
                  Ménière's disease: Role of vitagenes., Neurochem. Res., 
                  35(12): 2208-2217. http://dx.doi.org/10.1007/s11064-010-0304-2
 PMid:21042850
 |  
                  |  |  
                  | 7. Choi, Y.J., Kim, N.H., Lim, M.S., Lee, H.J., Kim, S.S. and 
                  Chun, W. (2014) Geldanamycin attenuates 3 Nitropropionic acid 
                  Induced apoptosis and JNK activation through the expression of 
                  HSP 70 in striatal cells., Int. J. Mol. Med., 34(1): 24-34. PMid:24756698 PMCid:PMC4072345
 |  
                  |  |  
                  | 8. Parsell, D.A. and Lindquist, S. (1994) Heat shock proteins 
                  and stress tolerance. In: Morimoto, R.I., Tissières, A. and 
                  Georgopoulos, C., editors. The Biology of Heat Shock Proteins 
                  and Molecular Chaperones., Vol. 26. Cold Spring Harbor 
                  Laboratory Press, Cold Spring Harbor, New York. p457-494. |  
                  |  |  
                  | 9. Pathan, M.M., Latif, A., Das, H., Siddiquee, G.M. and Khan, 
                  J.Z. (2010) Heat Shock Proteins and their clinical 
                  Implications., Vet. World, 3: 558-560. |  
                  |  |  
                  | 10. Coelho, V., and Faria, A.M. (2012) HSP60: Issues and 
                  insights on its therapeutic use as an immunoregulatory agent., 
                  Front. Immunol., 12(2): 97. |  
                  |  |  
                  | 11. O'Neill, S., Ingman, T.G., Wigmore, S.J., Harrison, E.M. 
                  and Bellamy, C.O. (2013) Differential expression of heat shock 
                  proteins in healthy and diseased human renal allografts, Ann. 
                  Transplant, 18: 550-7. http://dx.doi.org/10.12659/AOT.889599
 PMid:24113772
 |  
                  |  |  
                  | 12. Morimoto, R.I. (1998) Regulation of the heat shock 
                  transcriptional response: Cross talk between a family of heat 
                  shock factors molecular chaperones and negative regulators., 
                  Gene Dev., 12: 3788-3796. http://dx.doi.org/10.1101/gad.12.24.3788
 PMid:9869631
 |  
                  |  |  
                  | 13. Pratt, W.B. and Toft, D.O. (2003) Regulation of signaling 
                  protein function and trafficking by the hsp90/hsp70-based 
                  chaperone machinery., Exp. Biol. Med., 228(2): 111-33. |  
                  |  |  
                  | 14. De Thonel, A., Le Mouël, A. and Mezger, V. (2012) 
                  Transcriptional regulation of small HSP-HSF1 and beyond., Int. 
                  J. Biochem. Cell B., 44(10): 1593-1612. http://dx.doi.org/10.1016/j.biocel.2012.06.012
 PMid:22750029
 |  
                  |  |  
                  | 15. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. and 
                  Nardai, G. (1998) The 90-kDa molecular chaperone family: 
                  Structure function and clinical applications: A comprehensive 
                  review., Pharmacol. Therapeut., 79: 129–-168. http://dx.doi.org/10.1016/S0163-7258(98)00013-8
 |  
                  |  |  
                  | 16. Csermely, P., Agoston, V. and Pongor, S. (2005) The 
                  efficiency of multi-target drugs: The network approach might 
                  help drug design., Trends Pharmacol. Sci., 26(4): 178–-182. http://dx.doi.org/10.1016/j.tips.2005.02.007
 PMid:15808341
 |  
                  |  |  
                  | 17. Garnier, C., Lafitte, D., Tsvetkov, P.O., Barbier, P., 
                  Leclerc-Devin, J., Millot, J.M., Briand, C., Makarov, A.A., 
                  Catelli, M.G. and Peyrot, V. (2002) Binding of ATP to heat 
                  shock protein 90: Evidence for an ATP-binding site in the 
                  C-terminal domain., J. Biol. Chem., 277(14): 12208–-12214. http://dx.doi.org/10.1074/jbc.M111874200
 PMid:11805114
 |  
                  |  |  
                  | 18. Jego, G., Hazoumé, A., Seigneuric, R. and Garrido, C. 
                  (2013) Targeting heat shock proteins in cancer., Cancer Lett., 
                  332(2): 275-85. http://dx.doi.org/10.1016/j.canlet.2010.10.014
 PMid:21078542
 |  
                  |  |  
                  | 19. Richardson, P.G., Mitsiades, C.S., Laubach, J.P., Lonial, 
                  S., Chanan-Khan, A.A. and Anderson, K.C. (2011) Inhibition of 
                  heat shock protein 90 (HSP90) as a therapeutic strategy for 
                  the treatment of myeloma and other cancers., Br. J. Haematol., 
                  152 (4): 367-379. http://dx.doi.org/10.1111/j.1365-2141.2010.08360.x
 PMid:21219297
 |  
                  |  |  
                  | 20. Okayama, S., Kopelovich, L., Balmus, G., Weiss, R.S., 
                  Herbert, B.S., Dannenberg, A.J. and Subbaramaiah, K. (2014) 
                  p53 protein regulates Hsp90 ATPase activity and thereby Wnt 
                  signaling by modulating Aha1 expression., J. Biol. Chem., 
                  289(10): 6513-6525. PMid:24451373
 |  
                  |  |  
                  | 21. Banerji, U., O'donnell, A., Scurr, M., Pacey, S., 
                  Stapleton, S., Asad, Y., Simmons, L., Malone, Y. A., Raynaud 
                  F., Campbel L.M., Walton M., Lakhani S., Kaye S., Workman P., 
                  and Judson, I. (2005) Phase I pharmacokinetic and 
                  pharmacodynamic study of 17-allylamino 
                  17-demethoxygeldanamycin in patients with advanced 
                  malignancies., J. Clin. Oncol., 23(18): 4152–-4161. http://dx.doi.org/10.1200/JCO.2005.00.612
 PMid:15961763
 |  
                  |  |  
                  | 22. Tavernier, E., Flandrin-Gresta, P., Solly, F., Rigollet, 
                  L., Cornillon, J., Augeul-Meunier, K., Stephan, J.L., 
                  Montmartin, A., Viallet, A., Guyotat, D. and Campos, L. (2012) 
                  HSP90 inhibition results in apoptosis of Philadelphia acute 
                  lymphoblastic leukaemia cells: An attractive prospect of new 
                  targeted agents., J. Cancer Res. Clin., 138(10): 1753-1758. http://dx.doi.org/10.1007/s00432-012-1247-6
 PMid:22706881
 |  
                  |  |  
                  | 23. Giubellino, A., Sourbier, C., Lee, M.J., Scroggins, B., 
                  Bullova, P., Landau, M., Ying, W., Neckers, L., Trepel, J.B. 
                  and Pacak, K. (2013) Targeting heat shock protein 90 for the 
                  treatment of malignant pheochromocytoma., PLoS One., 8(2): 
                  e56083. http://dx.doi.org/10.1371/journal.pone.0056083
 PMid:23457505 PMCid:PMC3573066
 |  
                  |  |  
                  | 24. Tosti, G., Cocorocchio, E., Pennacchioli, E., Ferrucci, 
                  P.F., Testori, A. and Martinoli, C. (2014) Heat-shock 
                  proteins-based immunotherapy for advanced melanoma in the era 
                  of target therapies and immunomodulating agents., Expert Opin. 
                  Biol. Ther., 14(7): 955-967. doi:10.1517/14712598.2014.902928. http://dx.doi.org/10.1517/14712598.2014.902928
 |  
                  |  |  
                  | 25. Paul, S. and Mahanta, S. (2014) Association of heat-shock 
                  proteins in various neurodegenerative disorders: Is it a 
                  master key to open the therapeutic door? Mol. Cell. Biochem., 
                  386(1-2): 45-61. http://dx.doi.org/10.1007/s11010-013-1844-y
 PMid:24096700
 |  
                  |  |  
                  | 26. Di Domenico, F., Sultana, R., Tiu, G.F., Scheff, N.N., 
                  Perluigi, M., Cini, C. and Butterfield, D.A. (2010) Protein 
                  levels of heat shock proteins 27, 32, 60, 70, 90 and 
                  thioredoxin-1 in amnestic mild cognitive impairment: An 
                  investigation on the role of cellular stress response in the 
                  progression of Alzheimer disease., Brain Res., 1333: 72-81. http://dx.doi.org/10.1016/j.brainres.2010.03.085
 PMid:20362559 PMCid:PMC2871982
 |  
                  |  |  
                  | 27. Cornelius, C., Trovato Salinaro, A., Scuto, M., Fronte, 
                  V., Cambria, M.T., Pennisi, M., Bella, R., Milone, P., 
                  Graziano, A., Crupi, R., Cuzzocrea, S., Pennisi, G. and 
                  Calabrese, V. (2013) Cellular stress response sirtuins and UCP 
                  proteins in Alzheimer disease: Role of vitagenes., Immun. 
                  Ageing, 17: ;10 (1): 41. |  
                  |  |  
                  | 28. Wang, X., Cattaneo, F., Ryno, L., Hulleman, J., Reixach, 
                  N. and Buxbaum, J.N. (2014) The systemic amyloid precursor 
                  transthyretin (TTR) behaves as a neuronal stress protein 
                  regulated by HSF1 in SH-SY5Y human neuroblastoma cells and 
                  APP23 Alzheimer's disease model mice., J. Neurosci., 34(21): 
                  7253-7265. http://dx.doi.org/10.1523/JNEUROSCI.4936-13.2014
 PMid:24849358 PMCid:PMC4028500
 |  
                  |  |  
                  | 29. Ebrahimi-Fakhari, D., Saidi, L.J. and Wahlster, L. (2013) 
                  Molecular chaperones and protein folding as therapeutic 
                  targets in Parkinson's disease and other synucleinopathies., 
                  Acta Neuropathol. Commun., 5(1): 1-79. |  
                  |  |  
                  | 30. Bobkova, N.V., Garbuz, D.G., Nesterova, I., Medvinskaya, 
                  N., Samokhin, A., Alexandrova, I., Yashin, V., Karpov, V., 
                  Kukharsky, M.S., Ninkina, N.N., Smirnov, A.A., Nudler, E. and 
                  Evgenev, M. (2014) Therapeutic effect of exogenous hsp70 in 
                  mouse models of Alzheimer's disease., J. Alzheimers Dis., 
                  38(2): 425-435. PMid:23985416
 |  
                  |  |  
                  | 31. Suzuki, Y., Ogawa, S. and Sakakibara, Y. (2009) Chaperone 
                  therapy for neuronopathic lysosomal diseases: Competitive 
                  inhibitors as chemical chaperones for enhancement of mutant 
                  enzyme activities., Perspect. Medicin. Chem., 3: 7-19. |  
                  |  |  
                  | 32. Shukla, A.K., Pragya, P., Chaouhan, H.S., Tiwari, A.K., 
                  Patel, D.K., Abdin, M.Z. and Chowdhuri, D.K. (2014) Heat shock 
                  protein-70 (Hsp-70) suppresses paraquat-induced 
                  neurodegeneration by inhibiting JNK and caspase-3 activation 
                  in drosophila model of Parkinson's disease., PLoS One, 9(6): 
                  e98886. http://dx.doi.org/10.1371/journal.pone.0098886
 PMid:24887138 PMCid:PMC4041817
 |  
                  |  |  
                  | 33. Yenari, M.A., Giffard, R.G., Sapolsky, R.M. and Steinberg, 
                  G.K. (1999) The neuroprotective potential of heat shock 
                  protein 70 (HSP70)., Mol. Med. Today, 5(12): 525-531. http://dx.doi.org/10.1016/S1357-4310(99)01599-3
 |  
                  |  |  
                  | 34. Sharp, F.R., Zhan, X., and Liu, D.Z., (2013) Heat shock 
                  proteins in the brain: Role of Hsp70 Hsp 27 and HO-1 (Hsp32) 
                  and their therapeutic potential., Transl. Stroke Res., 4(6): 
                  685-692. http://dx.doi.org/10.1007/s12975-013-0271-4
 PMid:24323422 PMCid:PMC3858824
 |  
                  |  |  
                  | 35. Marber, M.S., Mestril, R. and Chi, S.H. (1995) 
                  Overexpression of the rat inducible 70-kD heat stress protein 
                  in a transgenic mouse increases the resistance of the heart to 
                  ischemic injury., J. Clin. Invest., 95(4): 1446–-1456. http://dx.doi.org/10.1172/JCI117815
 PMid:7706448 PMCid:PMC295626
 |  
                  |  |  
                  | 36. Rajdev, S., Hara, K., Kokubo, Y., Mestril, R., Dillmann, 
                  W., Weinstein, P.R. and Sharp, F.R. (2000) Mice overexpressing 
                  rat heat shock protein 70 are protected against cerebral 
                  infarction., Ann. Neurol., 47(6): 782–-791. http://dx.doi.org/10.1002/1531-8249(200006)47:6<782::AID-ANA11>3.0.CO;2-3
 |  
                  |  |  
                  | 37. Zhang, J., Lu, W., Lei, O., Tao, X., You, H. and Xie, P. 
                  (2013) Salvianolate increases heat shock protein expression in 
                  a cerebral ischemia-reperfusion injury model., Neural Regen. 
                  Res., 8(25): 2327–-2335. PMid:25206542 PMCid:PMC4146039
 |  
                  |  |  
                  | 38. Xia, D.Y., Li, W., Qian, H.R., Yao, S., Liu, J.G. and Qi, 
                  X.K. (2013) Ischemia preconditioning is neuroprotective in a 
                  rat cerebral ischemic injury model through autophagy 
                  activation and apoptosis inhibition., Braz. J. Med. Biol. 
                  Res., 46(7): 580-588. http://dx.doi.org/10.1590/1414-431X20133161
 PMid:23903681 PMCid:PMC3859329
 |  
                  |  |  
                  | 39. Galdiero, M., Del'Ero, G.C. and Marcatili, A. (1997) 
                  Cytokine and adhesion molecule expression in human monocytes 
                  and endothelial cells stimulated with bacterial heat shock 
                  proteins., Infect. Immun., 65(2): 699-707. PMid:9009333 PMCid:PMC176116
 |  
                  |  |  
                  | 40. Yadav, A.K., Kumar, V. and Jha, V. (2013). Heat shock 
                  proteins 60 and 70 specific proinflammatory and cytotoxic 
                  response of CD4+CD28 null cells in chronic kidney disease., 
                  Mediators. Inflamm., 2013: 384807. http://dx.doi.org/10.1155/2013/384807
 PMid:24347824 PMCid:PMC3857845
 |  
                  |  |  
                  | 41. Lovett, M.C., Coates, J.R., Shu, Y., Oglesbee, M.J., 
                  Fenner, W. and Moore, S.A. (2014) Quantitative assessment of 
                  hsp70 IL-1β and TNF-α in the spinal cord of dogs with E40K 
                  SOD1-associated degenerative myelopathy., Vet. J., 200(2): 
                  312-317. http://dx.doi.org/10.1016/j.tvjl.2014.03.003
 PMid:24662024
 |  
                  |  |  
                  | 42. Grundtman, C., Kreutmayer, S.B., Almanzar, G., Wick, M.C. 
                  and Wick, G. (2011) Heat shock protein 60 and immune 
                  inflammatory responses in atherosclerosis., Arterioscler. 
                  Thromb. Vasc. Biol., 31(5): 960-968. http://dx.doi.org/10.1161/ATVBAHA.110.217877
 PMid:21508342 PMCid:PMC3212728
 |  
                  |  |  
                  | 43. Wang, J., Li, Y. and Li, J. (2013) Cell stress response in 
                  rat chronic small bowel allograft rejection., Transplant. 
                  Proc., 45(6): 2539-2542. http://dx.doi.org/10.1016/j.transproceed.2013.02.120
 PMid:23953577
 |  
                  |  |  
                  | 44. Van Eden, W., Bonorino, C. and Van Der Zee, R. (2013) The 
                  immunology of cellular stress proteins., Front. Immunol., 4: 
                  153. http://dx.doi.org/10.3389/fimmu.2013.00153
 PMid:23785370 PMCid:PMC3684847
 |  
                  |  |  
                  | 45. Pockley, A.G. and Muthana, M. (2005) Heat shock proteins 
                  and allograft rejection., Contrib. Nephrol., 148:122-34. http://dx.doi.org/10.1159/000086057
 PMid:15912031
 |  
                  |  |  
                  | 46. Seemampillai, B., Germack, R., Felkin, L.E., McCormack, 
                  A., and Rose, M.L. (2014) Heat shock protein-27 delays acute 
                  rejection after cardiac transplantation: An experimental 
                  model., Transplantation, May 2998(1): 29-38. |  
                  |  |  
                  | 47. Neuer, A., Spandorfer, S.D., Giraldo, P., Dieterle, S., 
                  Rosenwaks, Z. and Witkin, S.S. (2000) The role of heat shock 
                  proteins in reproduction., Hum. Reprod. Update, 6(2): 149-159. http://dx.doi.org/10.1093/humupd/6.2.149
 PMid:10782573
 |  
                  |  |  
                  | 48. Linhares, I.M. and Witkin, S.S. (2010) Immunopathogenic 
                  consequences of Chlamydia trachomatis 60 kDa heat shock 
                  protein expression in the female reproductive tract., Cell 
                  Stress Chaperone, 15 (5): 467-473. http://dx.doi.org/10.1007/s12192-010-0171-4
 PMid:20182835 PMCid:PMC3006632
 |  
                  |  |  
                  | 49. Ji, Z., Duan, Y., Mou, L., Allam, J., Haidl, G., and Cai, 
                  Z. (2012) Association of heat shock proteins, heat shock 
                  factors and male infertility., Asian Pac. J. Reprod., 1(1): 
                  76-84. http://dx.doi.org/10.1016/S2305-0500(13)60053-6
 |  
                  |  |  
                  | 50. Acunzo, J., Katsogiannou, M. and Rocchi, P. (2012) Small 
                  heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and 
                  HSP22 (HspB8) as regulators of cell death., Int. J. Biochem. 
                  Cell B., 44(10): 1622-1631. http://dx.doi.org/10.1016/j.biocel.2012.04.002
 PMid:22521623
 |  
                  |  |  
                  | 51. Reddy, P.S., Kavi Kishor, P.B., Seiler, C., Kuhlmann, M., 
                  Eschen-Lippold, L., Lee, J., Reddy, M.K. and Sreenivasulu, N. 
                  (2014) Unraveling regulation of the small heat shock proteins 
                  by the heat shock factor HvHsfB2c in barley: Its implications 
                  in drought stress response and seed development., PLoS One., 
                  9(3): e89125. http://dx.doi.org/10.1371/journal.pone.0089125
 PMid:24594978 PMCid:PMC3942355
 |  
                  |  |  
                  | 52. Wood, K.L., Nunley, D.R., Moffatt-Bruce, S., Pope-Harman, 
                  A., Huang, Q., Shamo, E.N., Phillips, G.S., Baran, C., Batra, 
                  S., Marsh, C.B. and Doseff, A.I. (2010) The role of heat shock 
                  protein 27 in bronchiolitis obliterans syndrome after lung 
                  transplantation., J. Heart Lung Transpl., 29(7): 786-791. http://dx.doi.org/10.1016/j.healun.2010.03.004
 PMid:20456980 PMCid:PMC2902709
 |  
                  |  |  
                  | 53. Shemetov, A.A., Seit-Nebi, A.S. and Gusev, N.B. (2008) 
                  Structure, properties, and functions of the human small 
                  heat-shock protein HSP22 (HspB8, H11, E2IG1): A critical 
                  review., J. Neurosci. Res., 86(2): 264-269. http://dx.doi.org/10.1002/jnr.21441
 PMid:17722063
 |  
                  |  |  
                  | 54. Tang, S., Lv, Y., Chen, H., Adam, A., Cheng, Y., Hartung, 
                  J. and Bao, E. (2014) Comparative analysis of αB-crystallin 
                  expression in heat-stressed myocardial cells in vivo and in 
                  vitro., PLoS One, 9(1): e86937. http://dx.doi.org/10.1371/journal.pone.0086937
 PMid:24466295 PMCid:PMC3899361
 |  
                  |  |  
                  | 55. Xu, F., Yu, H., Liu, J., and Cheng, L. (2013) 
                  αB-crystallin regulates oxidative stress-induced apoptosis in 
                  cardiac H9c2 cells via the PI3K/AKT pathway., Mol. Biol. Rep., 
                  40(3): 2517-2526. http://dx.doi.org/10.1007/s11033-012-2332-2
 PMid:23212619
 |  
                  |  |  
                  | 56. Parfitt, D.A., Aguila, M., McCulley, C.H., Bevilacqua, D., 
                  Mendes, H.F., Athanasiou, D., Novoselov, S.S., Kanuga, N., 
                  Munro, P.M., Coffey, P.J., Kalmar, B., Greensmith, L. and 
                  Cheetham, M.E. (2014) The heat-shock response co-inducer 
                  arimoclomol protects against retinal degeneration in rhodopsin 
                  retinitis pigmentosa., Cell Death Dis., 5: e1236. http://dx.doi.org/10.1038/cddis.2014.214
 PMid:24853414 PMCid:PMC4047904
 |  
                  |  |  
                  | 57. Romanucci, M., Marinelli1, A., Sarli, G. and Salda, L. G. 
                  (2006) Heat shock protein expression in canine malignant 
                  mammary tumors., BMC Cancer, 6: 1471-2407. http://dx.doi.org/10.1186/1471-2407-6-171
 PMid:16803633 PMCid:PMC1525201
 |  
                  |  |  
                  | 58. Chu, R.M., Sun, T.J., Yang, H.Y., Wang, D.G., Liao, K.W., 
                  Chuang, T.F., Li, C.H. and Lee, W.C. (2001) Heat shock 
                  proteins in canine transmissible venereal tumor., Vet. Immunol. 
                  Immunopathol., 82(1-2): 9–-21. http://dx.doi.org/10.1016/S0165-2427(01)00327-0
 |  
                  |  |  
                  | 59. Selvarajah, G.T., Bonestroo, F.A., Kirpensteijn, J., Kik, 
                  M.J., Van der Zee, R., Van Eden, W., Timmermans-Sprang, E.P., 
                  Slob, A. and Mol, J.A. (2013) Heat shock protein expression 
                  analysis in canine osteosarcoma reveals HSP60 as a potentially 
                  relevant therapeutic target., Cell Stress Chaperon, 18(5): 
                  607-622. http://dx.doi.org/10.1007/s12192-013-0414-2
 PMid:23463150 PMCid:PMC3745254
 |  
                  |  |  
                  | 60. Unger-Waron, H., Brenner, J., Paz, R., Moalem, U., and 
                  Trainin Z. (1996) gamma delta T-lymphocytes and anti-heat 
                  shock protein reactivity in bovine leukemia virus infected 
                  cattle., Vet. Immunol. Immunopathol., 51(1-2): 79-87. http://dx.doi.org/10.1016/0165-2427(95)05495-2
 |  
                  |  |  
                  | 61. Serrano, C., Bolea, R., Lyahyai, J., Filali, H., Varona, 
                  L., Marcos-Carcavilla, A., Cristina, A., Calvo, J.H., Serrano, 
                  M., Badiola, J.J., Zaragoza, P. and Martín-Burriel, I. (2011) 
                  Changes in HSP gene and protein expression in natural scrapie 
                  with brain damage., Vet. Res., 42(1): 13. http://dx.doi.org/10.1186/1297-9716-42-13
 PMid:21314976 PMCid:PMC3037893
 |  |