| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Review 
              
              
(Published online: 
              21-07-2015) 
              12.  
              
              Preparation and effects of nano mineral 
              particle feeding in livestock: A review - Partha 
              Sarathi Swain, D. Rajendran, S. B. N. Rao and George Dominic 
              
              Veterinary World, 8(7): 888-891   
              
   
                
                
doi: 
              10.14202/vetworld.2015.888-891   Partha 
              Sarathi Swain: 
              
              Division of Dairy Cattle Nutrition, National Dairy Research 
              Institute, Karnal - 132 001, Haryana, India;
              
              
              parthavet@yahoo.com D. 
              Rajendran: 
              Animal Nutrition Division, National Institute of Animal Nutrition 
              and Physiology, Bengaluru - 560 030, Karnataka, India;
              
              
              rajnutri@gmail.com S. B. 
              N. Rao: 
              Animal Nutrition Division, National Institute of Animal Nutrition 
              and Physiology, Bengaluru - 560 030, Karnataka, India;
              
              
              SB.Rao@icar.gov.in George 
              Dominic: Division of Dairy Cattle Nutrition, National Dairy 
              Research Institute, Karnal - 132 001, Haryana, India;
              
              georgedominicp@gmail.com   Received: 
              01-03-2015, Revised: 10-06-2015, Accepted: 17-06-2015, Published 
              online: 21-07-2015   
              
              
              Corresponding author:S. B. N. Rao, e-mail: SB.Rao@icar.gov.in 
 
              Citation:Swain PS, Rajendran D, 
              Rao SBN, Dominic G (2015) Preparation and effects of nano mineral 
              particle feeding in livestock: A review, Veterinary World 8(7): 
              888-891. 
 
              Abstract 
 Nano 
              minerals are widely used in diversified sectors including 
              agriculture, animal, and food systems. Hence, their multiple uses 
              provoke the production of nanomaterials at the laboratory level, 
              which can be achieved through physical, chemical or biological 
              methods. Every method is having its own merits and demerits. But 
              keeping all in mind, chemical methods are more beneficial, as 
              uniform nano-sized particles can be produced, but the use of 
              corrosive chemicals is the main demerits. When it comes to 
              environmental issues, biological methods are better as these are 
              free from corrosive chemicals, but maintaining the culture media 
              is the disadvantage. For animal feeding, chemical methods are 
              mostly followed to produce nano minerals as it is cheap and less 
              time consuming. These nano minerals also showed their significant 
              effects even at lower doses of recommendations than the 
              conventional mineral sources. These nano minerals have significant 
              growth promoting, immuno-modulatory, antibacterial effects than 
              the conventional counterparts. They also alter the rumen 
              fermentation pattern on supplementation in the animal feeds. Apart 
              from these, nano minerals are reported to enhance the reproduction 
              in the livestock and poultry. 
              Keywords: biological effects, mineral 
              nutrition, nanotechnology, nano Zn, synthesis. 
 
              References 
 
                
                  | 1. Newman, M.D., Stotland, M. and Ellis, J.I. (2009) The 
                  safety of nanosized particles in titanium dioxide - and 
                  zinc-oxide based sunscreens. J. Am. Acad. Dermatol., 61(4): 
                  685-692. http://dx.doi.org/10.1016/j.jaad.2009.02.051
 PMid:19646780
 |  
                  |  |  
                  | 2. Rasmussen, J.W., Martinez, E., Louka, P. and Wingett, D.G. 
                  (2010) Zinc oxide nanoparticles for selective destruction of 
                  tumor cells and potential for drug delivery applications. 
                  Expert Opin. Drug Deliv., 7(9): 1063-1077. http://dx.doi.org/10.1517/17425247.2010.502560
 PMid:20716019 PMCid:PMC2924765
 |  
                  |  |  
                  | 3. Te-Hsing, W., Yi-Der, T. and Lie-Hang, S. (2007), The novel 
                  methods for preparing antibacterial fabric composites 
                  containing nano-material. Solid State Phenom., 124(12): 
                  1241-1244. |  
                  |  |  
                  | 4. Stoimenov, P.K., Klinger, R.L., Marchin, G.L. and Klabunde, 
                  K.J. (2002) Metal oxide nanoparticles as bactericidal agents. 
                  Langmuir., 18: 6679-6686. http://dx.doi.org/10.1021/la0202374
 |  
                  |  |  
                  | 5. Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. 
                  and Sun, Z. (2010) Role of the dissolved zinc ion and reactive 
                  oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. 
                  Lett., 199: 389-397. http://dx.doi.org/10.1016/j.toxlet.2010.10.003
 PMid:20934491
 |  
                  |  |  
                  | 6. Sri Sindhura, K., Selvam, P.P., Prasad, T.N.V. and Hussain, 
                  O.M. (2014) Synthesis, characterization and evaluation of 
                  effect of phytogenic zinc nanoparticles on soil exo-enzymes. 
                  Appl. Nanosci., 4: 819-827. http://dx.doi.org/10.1007/s13204-013-0263-4
 |  
                  |  |  
                  | 7. Wang, Z.L. (2000) Characterization of Nanophase Material. 
                  Wiley-VCH Verlag GmbH, Weinheim. p13-14. PMCid:PMC1760571
 |  
                  |  |  
                  | 8. Kaiser, D.L ., Standridge, S., Friedersdorf, L., Geraci, C. 
                  L., Kronz, F., Meador, M. A., ... & Stepp, D. M. (2014). 2014 
                  National Nanotechnology Initiative Strategic Plan.NSTC. (2004) 
                  Available from: http://www.nano.gov/html/res/fy04-pdf/fy04- 
                  main.html. |  
                  |  |  
                  | 9. Yadav, A., Prasad, V., Kathe, A.A., Raj, S., Yadav, D., 
                  Sundaramoorthy, C. and Vigneshwaran, N. (2006) Functional 
                  finishing in cotton fabrics using zinc oxide nanoparticles. 
                  Bull. Mater. Sci., 29(6): 641-645. http://dx.doi.org/10.1007/s12034-006-0017-y
 |  
                  |  |  
                  | 10. Thulasi, A., Rajendran, D., Jash, S., Selvaraju, S., Lyju 
                  Jose, V., Velusamy, S. and Mathivanan, S. (2013) 
                  Nanobiotechnology in animal nutrition. In: Sampath, K.T., 
                  Ghosh, J., Bhatta, R., editors. Satish Serial Publishing 
                  House, New Delhi. p499-515. |  
                  |  |  
                  | 11. Patil, S.S., Kore, K.B. and Kumar, P. (2012) 
                  Nanotechnology and its applications in veterinary and animal 
                  science. Vet. World, 2: 475-477. http://dx.doi.org/10.5455/vetworld.2009.475-477
 |  
                  |  |  
                  | 12. Feng, M., Wang, Z.S., Zhou, A.G. and Ai, D.W. (2009). The 
                  effects of different sizes of nanometer zinc oxide on the 
                  proliferation and cell integrity of mice duodenum-epithelial 
                  cells in primary culture. Pak. J. Nutr., 8(8): 1164-1166. http://dx.doi.org/10.3923/pjn.2009.1164.1166
 |  
                  |  |  
                  | 13. Zaboli, K., Aliarabi, H., Bahari, A.A. and 
                  Abbasalipourkabir, R. (2013) Role of dietary nano-zinc oxide 
                  on growth performance and blood levels of mineral: A study on 
                  in Iranian Angora (Markhoz) goat kids. Int Advis. Board, 2(1): 
                  19-26. |  
                  |  |  
                  | 14. Reddy, S.T., van der Vlies, A.J., Simeoni, E., Angeli, V., 
                  Randolph, G.J., O'Neil, C.P., Lee, L.K., Swartz, M.A. and 
                  Hubbell, J.A. (2007) Exploiting lymphatic transport and 
                  complement activation in nanoparticle vaccines. Natr 
                  Biotechnol., 25: 1159-1164. http://dx.doi.org/10.1038/nbt1332
 PMid:17873867
 |  
                  |  |  
                  | 15. Hillyer, J.F. and Albrecht, R.M. (2001) Gastrointestinal 
                  persorption and tissue distribution of differently sized 
                  colloidal gold nanoparticles. J. Pharm. Sci., 90: 1927-1936. http://dx.doi.org/10.1002/jps.1143
 PMid:11745751
 |  
                  |  |  
                  | 16. Dickson, R.M. and Lyon, L.A. (2000) Unidirectional plasmon 
                  propagation in metallic nanowires. J. Phys. Chem. B., 104: 
                  6095-6098. http://dx.doi.org/10.1021/jp001435b
 |  
                  |  |  
                  | 17. Lewis, K. and Klibanov, A.M. (2005) Surpassing nature: 
                  Rational design of sterile-surface materials. Trends 
                  Biotechnol., 23: 343-348. http://dx.doi.org/10.1016/j.tibtech.2005.05.004
 PMid:15922467
 |  
                  |  |  
                  | 18. Rosi, N.L. and Mirkin, C.A. (2005) Nanostructures in 
                  biodiagnostics. Chem. Rev., 105(4): 1547-1562. http://dx.doi.org/10.1021/cr030067f
 PMid:15826019
 |  
                  |  |  
                  | 19. Yang, Z.P. and Sun, L.P. (2006) Effects of nanometre ZnO 
                  on growth performance of early weaned piglets. J. Shanxi 
                  Agric. Sci., 3: 024. |  
                  |  |  
                  | 20. Mishra, A., Swain, R.K., Mishra, S.K., Panda, N. and 
                  Sethy, K. (2014) Growth performance and serum biochemical 
                  parameters as affected by nano zinc supplementation in layer 
                  chicks. Indian J. Anim. Nutr., 31(4): 384-388. |  
                  |  |  
                  | 21. Lina, T., Jianyang, J., Fenghua, Z., Huiying, R. and 
                  Wenli, L. (2009) Effect of nano-zinc oxide on the production 
                  and dressing performance of broiler. Chinese Agricultural 
                  Science Bulletin, 2: 003. |  
                  |  |  
                  | 22. Rajendran, D. (2013) Application of nano minerals in 
                  animal production system. Res. J. Biotechnol., 8(3): 1-3. |  
                  |  |  
                  | 23. Sahoo, A., Swain, R.K., Mishra, S.K. and Jena, B. (2014a) 
                  Serum biochemical indices of broiler birds fed on inorganic, 
                  organic and nano zinc supplemented diets. Int. J. Recent Sci. 
                  Res., 5(11): 2078-2081. |  
                  |  |  
                  | 24. Sahoo, A., Swain, R.K. and Mishra, S.K. (2014b) Effect of 
                  inorganic, organic and nano zinc supplemented diets on 
                  bioavailability and immunity status of broilers. Int. J. Adv. 
                  Res., 2(11): 828-837. |  
                  |  |  
                  | 25. Zhisheng, C.J. (2011), Effect of nano-zinc oxide 
                  supplementation on rumen fermentation in vitro. Chinese J. 
                  Anim. Nutr., 8: 023. |  
                  |  |  
                  | 26. Hahn, H. (1997) Unique features and properties of 
                  nanostructured materials. Nanostruct. Mater., 9: 3-12. http://dx.doi.org/10.1016/S0965-9773(97)00013-5
 |  
                  |  |  
                  | 27. Ingale, A.G. and Chaudhari, A.N. (2013) Biogenic synthesis 
                  of nanoparticles and potential applications: An eco-friendly 
                  approach. J. Nanomed. Nanotechol., 4: 165. http://dx.doi.org/10.4172/2157-7439.1000165
 |  
                  |  |  
                  | 28. Iravani, S., Korbekandi, H., Mirmohammadi, S.V. and 
                  Zolfaghari, B. (2014) Synthesis of silver nanoparticles: 
                  Chemical, physical and biological methods. Res. Pharm. Sci., 
                  9(6): 385-406. |  
                  |  |  
                  | 29. Rajendran, D., Thulasi, A., Jash, S., Selvaraju, S. and 
                  Rao, S.B.N. (2013) Synthesis and application of nano minerals 
                  in livestock industry. In: Sampath, K.T., Ghosh, J., Bhatta, 
                  R., editors. Animal Nutrition and Reproductive Physiology 
                  (Recent Concepts). Satish Serial Publishing House, Delhi, 
                  p517-530. |  
                  |  |  
                  | 30. Cardenas, G., Meléndrez, M., Cruzat, C. and Díaz, J. 
                  (2007) Synthesis of tin nanoparticles by physical vapour 
                  deposition technique (vd). Acta Microsci., 1: 1-2. |  
                  |  |  
                  | 31. Koch, C.C. (1997) Synthesis of nanostructured materials by 
                  mechanical milling: Problems and opportunities. Nanostruct. 
                  Mater., 9: 13-22. http://dx.doi.org/10.1016/S0965-9773(97)00014-7
 |  
                  |  |  
                  | 32. Siegel, R.W. (1991) In: Cahn, R.W., Haasen, P., Kramer, 
                  E.S., editors. Materials Science and Technology. VCH Weinheim, 
                  New York. p583. |  
                  |  |  
                  | 33. Bakker, H., Zhou, G.F. and Yang, H. (1995) Mechanically 
                  driven disorder and phase transformations in alloys. Prog. 
                  Mater. Sci., 39: 159-241. http://dx.doi.org/10.1016/0079-6425(95)00001-1
 |  
                  |  |  
                  | 34. Lane, R., Craig, B. and Babcock, W. (2002) Materials 
                  engineering with nature's building blocks. AMPTIAC Newslett. 
                  Spring., 6: 31-37. |  
                  |  |  
                  | 35. Oremland, R.S., Herbal, M.J., Blum, J.S., Langely, S., 
                  Beveridge, T.J., Jayan, P.M., Sutto, T. and Ellis, A.V. (2004) 
                  Structural and spectral features of selenium nanospheres 
                  produced by Se-respiring bacteria. Appl. Environ. Microbiol., 
                  70: 52-60. http://dx.doi.org/10.1128/AEM.70.1.52-60.2004
 PMid:14711625 PMCid:PMC321302
 |  
                  |  |  
                  | 36. Szczepanowicz, K., Stefan'ska, J. and Socha, R.P. (2010) 
                  Preparation of silver nanoparticles via chemical reduction and 
                  their antimicrobial activity. Physicochem. Probl. Mi., 45: 
                  85-98. |  
                  |  |  
                  | 37. Zhou, Y. (2005) Recent advances in ionic liquids for 
                  synthesis of inorganic nano-materials. Curr. Nanosci., 1: 
                  35-42. http://dx.doi.org/10.2174/1573413052953174
 |  
                  |  |  
                  | 38. Yang, J., Deivaraj, T.C., Too, H.P. and Lee, J.Y. (2004) 
                  Acetate stabilization of metal nanoparticles and its role in 
                  the preparation of metal nanoparticles in ethylene glycol. 
                  Langmuir, 20: 4241-4245. http://dx.doi.org/10.1021/la0361159
 PMid:15969423
 |  
                  |  |  
                  | 39. Marye, J. and Inbathamizh, L. (2012) Green synthesis and 
                  characterization of nano silver using leaf extract of morinda 
                  pubescens. Asian J. Pharm. Clin. Res., 5(1): 159-162. |  
                  |  |  
                  | 40. Narayanan, K.B. and Sakthive, N. (2010) Photosynthesis of 
                  gold nanoparticles using leaf extract of Coleus amboinicus 
                  Lour. Mater. Charact., 61: 1232-1238. http://dx.doi.org/10.1016/j.matchar.2010.08.003
 |  
                  |  |  
                  | 41. Kaushik, N., Thakkar, M.S., Snehit, S., Mhatre, M.S., 
                  Rasesh, Y. and Parikh, M.S. (2010) Biological synthesis of 
                  metallic nanoparticles. Nanomed. Nanotechnol., 6: 257-262. http://dx.doi.org/10.1016/j.nano.2009.07.002
 PMid:19616126
 |  
                  |  |  
                  | 42. Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., 
                  Gardea-Torresdey, J.L. and Pal, T. (2007) Synthesis of plant 
                  mediated gold nanoparticles and catalytic role of bio matrix- 
                  embedded nanomaterials. Environ. Sci. Technol., 41: 5137-5142. http://dx.doi.org/10.1021/es062929a
 PMid:17711235 PMCid:PMC2518977
 |  
                  |  |  
                  | 43. Philip, D. (2010) Green synthesis of gold and silver 
                  nanoparticles using Hibiscus rosa sinensis. Phys. E.: 
                  (Low-dimensional Systems and Nanostructures), 42: 1417-1424. http://dx.doi.org/10.1016/j.physe.2009.11.081
 |  
                  |  |  
                  | 44. Philip, D. (2011) Mangifera indica leaf-assisted 
                  biosynthesis of well-dispersed silver nanoparticles. 
                  Spectrochim. Acta A. Mol. Biomol. Spectroschim., 78: 327-331. http://dx.doi.org/10.1016/j.saa.2010.10.015
 PMid:21030295
 |  
                  |  |  
                  | 45. Shankar, S.S., Ahmad, A., Rai, A. and Sastry, M. (2004) 
                  Rapid synthesis of Au Ag and bimetallic Au core-Ag shell 
                  nanoparticles by using neem (Azadirachta indica) leaf broth. 
                  J. Colloid Interface Sci., 275: 496-502. http://dx.doi.org/10.1016/j.jcis.2004.03.003
 PMid:15178278
 |  |