| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
              
              
(Published online: 
              07-07-2015) 
              
              
              2.  
              
              Modeling of spatial distribution for 
              scorpions of medical importance in the São Paulo State, Brazil 
              - José Brites-Neto and Keila Maria Roncato Duarte 
              
              Veterinary World, 8(7): 823-830   
              
   
                
                
doi: 
              10.14202/vetworld.2015.823-830   José 
              Brites-Neto: 
              
              Epidemiological Surveillance Department, Secretariat of Health, 
              Americana, São Paulo, Brazil;
              
              
              samevet@yahoo.com Keila 
              Maria Roncato Duarte: Department of Genetics and Animal 
              Reproduction, Institute of Animal Science, Nova Odessa, São Paulo, 
              Brazil; 
              
              keiladuarte@globo.com   Received: 
              12-03-2015, Revised: 01-06-2015, Accepted: 10-06-2015, Published 
              online: 07-07-2015   
              
              
              Corresponding author:José Brites-Neto, e-mail: samevet@yahoo.com.br 
 
              Citation:Brites-Neto J, Duarte 
              KMR (2015) Modeling of spatial distribution for scorpions of 
              medical importance in the São Paulo State, Brazil, Veterinary 
              World 8(7): 823-830. 
 
              Abstract 
 Aim:
              In this work, we aimed to develop maps of modeling geographic 
              distribution correlating to environmental suitability for the two 
              species of scorpions of medical importance at São Paulo State and 
              to develop spatial configuration parameters for epidemiological 
              surveillance of these species of venomous animals. 
              Materials and Methods: In this study, 54 georeferenced points 
              for Tityus serrulatus and 86 points for Tityus bahiensis
              and eight environmental indicators, were used to generate 
              species distribution models in Maxent (maximum entropy modeling of 
              species geographic distributions) version 3.3.3k using 70% of data 
              for training (n=38 to T. serrulatus and n=60 to T.
              bahiensis) and 30% to test the models (n=16 for T.
              serrulatus and n=26 for T. bahiensis). The 
              logistic threshold used to cut models in converting the continuous 
              probability model into a binary model was the “maximum test 
              sensitivity plus specificity,” provided by Maxent, with results of 
              0.4143 to T. serrulatus and of 0.3401 to T.
              bahiensis. The models were evaluated by the area under the 
              curve (AUC), using the omission error and the binomial 
              probability. With the data generated by Maxent, distribution maps 
              were produced using the “ESRI® ArcGIS 10.2.2 
              for Desktop” software. 
              Results: The models had high predictive success (AUC=0.7698±0.0533, 
              omission error=0.2467 and p<0.001 for T. serrulatus 
              and AUC=0.8205±0.0390, omission error=0.1917 and p<0.001 for T.
              bahiensis) and the resultant maps showed a high 
              environmental suitability in the north, central, and southeast of 
              the state, confirming the increasing spread of these species. The 
              environmental variables that mostly contributed to the scorpions 
              species distribution model were rain precipitation (28.9%) and 
              tree cover (28.2%) for the T. serrulatus and 
              temperature (45.8%) and thermal amplitude (12.6%) for the T.
              bahiensis. 
              Conclusion: The distribution model of these species of medical 
              importance scorpions in São Paulo State revealed a higher 
              environmental suitability of these species in the regions north, 
              central, and southeast of the state, warning to emergencies 
              actions for prevention and surveillance from scorpion stings in 
              several counties. There is also a need to best conservation 
              strategies related to neighboring territories, with the 
              implementation of new environmental protected areas and measures 
              of spread control of these species in urban areas of several 
              counties.  
              Keywords: binomial probability, 
              environmental variable, georeferencing, maxent, Tityus 
              bahiensis, Tityus serrulatus. 
 
              References 
 
                
                  | 1. Lourenço, W.R. (2014) Scorpion diversity and distribution: 
                  Past and present patterns. In: Gopalakrishnakone, P., 
                  Schwartz, E.F., Possani, L.D., Rodríguez de la Vega, R.C., 
                  editors. Scorpion Venoms. Toxinology. Springer 
                  Science+Business Media, Dordrecht. p1-20. 
                  doi:10.1007/978-94-007-6647-1. http://dx.doi.org/10.1007/978-94-007-6647-1
 |  
                  |  |  
                  | 2. Porto, T.J., Brazil, T.K. and Souza, C.A.R. (2010) 
                  Diversidade de escorpiões do Brasil. In: Brazil, T.K. and 
                  Porto, T.J., editors. Os Escorpiões. EDUFBA, Salvador. p47-63. |  
                  |  |  
                  | 3. Scholte, R.G.C., Caldeira, R.L., Simões, M.C.M., Stutz, W.H., 
                  Silva, L.L., Carvalho, O.S. and Oliveira, G. (2009) Inter – 
                  and intrapopulational genetic variability of Tityus serrulatus 
                  (Scorpiones, Buthidae). Acta Trop., 112: 97-100. http://dx.doi.org/10.1016/j.actatropica.2009.07.002
 PMid:19595660
 |  
                  |  |  
                  | 4. Goyffon, M. and Tournier, J.N. (2014) Scorpions: A 
                  presentation. Toxins, 6: 2137-2148. http://dx.doi.org/10.3390/toxins6072137
 PMid:25133517 PMCid:PMC4113747
 |  
                  |  |  
                  | 5. Lourenço, W.R. and Von Eickstedt, V.R.D. (2009) Scorpions 
                  of medical importance. In: Cardoso, J.L.C., França, F.O.S., 
                  Wen, F.H., Málaque, C.M.S., Haddad, Jr., V. Poisonous Animals 
                  in Brazil. Biology, Clinical and therapeutics of accidents. 
                  Sarvier, São Paulo. p198-213 . |  
                  |  |  
                  | 6. Wentz, E.A., Anderson, S., Fragkias, M., Netzband, M., 
                  Mesev, V., Myint, S.W., Quattrochi, D., Rahman, A. and Seto, 
                  K.C. (2014) Supporting global environmental change research: A 
                  review of trends and knowledge gaps in Urban remote sensing. 
                  Remote Sens., 6: 3879-3905. http://dx.doi.org/10.3390/rs6053879
 |  
                  |  |  
                  | 7. Stockmann, R. and Ythier, E. (2010) Scorpions of the World. 
                  NAP editions, Paris. |  
                  |  |  
                  | 8. Rosa, C.M., Abegg, A.D., Borges, L.M., Bitencourt, G.S.S. 
                  and Di Mare, R.A. (2015) New record and occurrence map of 
                  Tityus serrulatus Lutz & Mello, 1922 (Scorpiones, Buthidae) in 
                  the state of rio grande do sul, southern Brazil. Check List, 
                  11(1): 1556. doi: http://dx.doi.org/10.15560/11.1.1556. http://dx.doi.org/10.15560/11.1.1556
 |  
                  |  |  
                  | 9. Chippaux, J.P. (2012) Emerging options for the management 
                  of scorpion stings. Drug. Des. Dev. Ther., 6: 165-173. http://dx.doi.org/10.2147/DDDT.S24754
 PMid:22826633 PMCid:PMC3401053
 |  
                  |  |  
                  | 10. Porto, T.J. and Brazil, T.K. (2010) Quem são os 
                  Escorpiões? In: Brazil, T.K. and Porto, T.J. Os Escorpiões. 
                  EDUFBA, Salvador. p15-32. |  
                  |  |  
                  | 11. Lourenço, W.R. and Cloudsley-Thompson, J.L. (1999) 
                  Discovery of a sexual population of Tityus serrulatus, one of 
                  the morphs within the complex Tityus stigmurus (Scorpiones, 
                  Buthidae). J. Arachnol., 27: 154-158. |  
                  |  |  
                  | 12. Pardal, P.P.O., Ishikawa, E.A.Y., Vieira, J.L.F., Coelho, 
                  J.S., Dórea, R.C.C., Abati, P.A.M., Quiroga, M.M.M. and 
                  Chalkidis, H.M. (2014) Clinical aspects of envenomation caused 
                  by Tityus obscurus (Gervais, 1843) in two distinct regions of 
                  Pará state, Brazilian Amazon basin: A prospective case series. 
                  J. Venom. Anim. Toxins Incl. Trop. Dis., 20: 3. 
                  doi:10.1186/1678-9199-20-3. http://dx.doi.org/10.1186/1678-9199-20-3
 |  
                  |  |  
                  | 13. Reckziegel, G.C. and Pinto Jr, V.L. (2014) Scorpionism in 
                  Brazil in the years 2000 to 2012. J. Venom. Anim. Toxins Incl. 
                  Trop. Dis., 20: 46. doi:10.1186/1678-9199-20-46. http://dx.doi.org/10.1186/1678-9199-20-46
 |  
                  |  |  
                  | 14. Brazil, Secretariat of Health Surveillance, Department of 
                  Epidemiological Surveillance (2009) Control manual of 
                  scorpions. Ministry of Health, Brasília.. |  
                  |  |  
                  | 15. Lucas, S.M., Goldoni, P.A.M., Candido, D.M. and Knysak, I. 
                  (2010) Butantan institute: strategies to obtain scorpions for 
                  the production of anti-scorpion serum. J. Venom. Anim. Toxins 
                  Incl. Trop. Dis., 16(4): 530-533. http://dx.doi.org/10.1590/S1678-91992010000400002
 |  
                  |  |  
                  | 16. Eickstedt, V.R.D., von Ribeiro, L.A., Candido, D.M., 
                  Albuquerque, M.J. and Jorge, M.T. (1996) Evolution of 
                  scorpionism by Tityus bahiensis (Perty) and Tityus serrulatus 
                  lutz and mello and geographical distribution of the two 
                  species in the state of São Paulo - Brazil. J. Venom. Anim. 
                  Toxins, 2(2). doi:10.1590/S0104-79301996000200003. http://dx.doi.org/10.1590/S0104-79301996000200003
 |  
                  |  |  
                  | 17. Szilagyi-Zecchin, V.J., Fernandes, A.L., Castagna, C.L. 
                  and Voltolini, J.C. (2012) Abundance of scorpions Tityus 
                  serrulatus and Tityus bahiensis associated with climate in 
                  urban area (Scorpiones, Buthidae). Indian Journal of 
                  Arachnology, 1(2): 15-23. |  
                  |  |  
                  | 18. Hoshino, K., Moura, A.T.V. and De Paula, H.M.G. (2006) 
                  Selection of enviromental temperature by the yellow scorpion 
                  Tityus serrulatus Lutz and Mello, 1992 (Scorpiones, Buthidae). 
                  J. Venom. Toxins Incl. Trop. Dis., 12: 59-66. http://dx.doi.org/10.1590/S1678-91992006000100005
 |  
                  |  |  
                  | 19. Cloudsley-Thompson, J.L. (1975) Adaptations of arthropoda 
                  to arid environments. Annu. Rev. Entomol., 20: 261-283. http://dx.doi.org/10.1146/annurev.en.20.010175.001401
 PMid:1090239
 |  
                  |  |  
                  | 20. Gefen, E. and Ar, A. (2006) Temperature dependence of 
                  water loss rates in scorpions and its effect on the 
                  distribuition of Buthotus judaicus (Buthidae) in Israel. Comp. 
                  Biochem. Physiol., 144: 58-62. http://dx.doi.org/10.1016/j.cbpa.2006.02.002
 PMid:16600648
 |  
                  |  |  
                  | 21. Chowell, G., Hyman, J.M., Díaz-Due-as, P. and Hengartner, 
                  N.W. (2005) Predicting scorpion sting incidence in a endemic 
                  region using climatological variables. Int. J. Environ. Health 
                  Res., 15: 425-435. http://dx.doi.org/10.1080/09603120500392475
 PMid:16506436
 |  
                  |  |  
                  | 22. Ferraz, K.M.P., Beisiegel, B.M., Paula, R.C., Sana, D.A., 
                  Campos, C.B., Oliveira, T.G. and Desbiez, A.L.J. (2012) How 
                  species distribution models can improve cat conservation - 
                  Jaguars in Brazil. Cat. News, 7: 38-42. |  
                  |  |  
                  | 23. Patel, A. and Waters, N. (2012) Using geographic 
                  information systems for health research. In: Alam, B.M., 
                  editor. Application of Geographic Information Systems. InTech, 
                  Rijeka. p303-320. dx.doi.org/10.5772/47941. http://dx.doi.org/10.5772/47941
 |  
                  |  |  
                  | 24. Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) 
                  Maximum entropy modeling of species geographic distributions. 
                  Ecol. Model., 190: 231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
 |  
                  |  |  
                  | 25. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., 
                  Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., 
                  Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, 
                  B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., 
                  Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., 
                  Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, 
                  S., Wisz, M.S. and Zimmermann, N.E. (2006) Novel methods 
                  improve prediction of species' distributions from occurrence 
                  data. Ecography, 29: 129-151. http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
 |  
                  |  |  
                  | 26. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, 
                  Y.E. and Yates, C.J. (2011) A statistical explanation of Max 
                  Ent for ecologists. Divers. Distrib., 17(1): 43-57. 
                  doi:10.1111/j.1472-4642.2010.00725.x. http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
 |  
                  |  |  
                  | 27. Mateo, R.G., Croat, T.B., Felicísimo, A.M. and Mu-oz, J. 
                  (2010) Profile or group discriminative techniques? Generating 
                  reliable species distribution models using pseudo-absences and 
                  target-group absences from natural history collections. 
                  Divers. Distrib., 16(1): 84-94. 
                  doi:10.1111/j.1472-4642.2009.00617.x. http://dx.doi.org/10.1111/j.1472-4642.2009.00617.x
 |  
                  |  |  
                  | 28. Miller, A.L., Makowsky, R.A., Formanowicz, D.R., Prendini, 
                  L. and Cox, C.L. (2014) Cryptic genetic diversity and complex 
                  phylogeography of the boreal North American scorpion, 
                  Paruroctonus boreus (Vaejovidae). Mol. Phylogenet. Evol., 71: 
                  298-307. http://dx.doi.org/10.1016/j.ympev.2013.11.005
 PMid:24269314
 |  
                  |  |  
                  | 29. Rogers, D.P., Shapiro, M.A., Brunet, G., Cohen, J.C., 
                  Connor, S.J., Diallo, A.A., Elliott, W., Haidong, K., Hales, 
                  S., Hemming, D., Jeanne, I., Lafaye, M., Mumba, Z., Raholijao, 
                  N., Rakotomanana, F., Teka, H., Trtanj, J. and Whung, P.Y. 
                  (2010) Health and climate – Opportunities. Proc. Environ. 
                  Sci., 1: 37-54. http://dx.doi.org/10.1016/j.proenv.2010.09.005
 |  
                  |  |  
                  | 30. Phillips, S.J. and Dudik, M. (2008) Modeling of species 
                  distributions with Maxent: New extensions and a comprehensive 
                  evaluation. Ecography, 31: 161-175. http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x
 |  
                  |  |  
                  | 31. Pearson, R.G. (2010) Species' distribution modeling for 
                  conservation educators and practitioners. Synthesis. Lessons 
                  Conserv., 3: 54-89. |  
                  |  |  
                  | 32. Veloz, S.D. (2009) Spatially autocorrelated sampling 
                  falsely inflates measures of accuracy for presence-only niche 
                  models. J. Biogeogr., 36: 2290-2299. http://dx.doi.org/10.1111/j.1365-2699.2009.02174.x
 |  
                  |  |  
                  | 33. Lira, A.F.A. and Souza, A.M. (2014) Microhabitat use by 
                  scorpion species (Arachnida: Scorpiones) in the montane 
                  Atlantic Rain Forest, Brazil. Rev. Iber. Aracnol., 24: 
                  107-108. |  
                  |  |  
                  | 34. Silva, A.V.M., Magalhaes, M.A.F., Brazil, R.P. and 
                  Carreira, J.C.A. (2011) Ecological study and risk mapping of 
                  leishmaniasis in an endemic area of Brazil based on a 
                  geographical information systems approach. Geospat. Health, 
                  6(1): 33-40. http://dx.doi.org/10.4081/gh.2011.155
 PMid:22109861
 |  
                  |  |  
                  | 35. Kshirsagar, D.P., Savalia, C.V., Kalyani, I.H., Kumar, R. 
                  and Nayak, D.N. (2013) Disease alerts and forecasting of 
                  zoonotic diseases: An overview. Vet. World, 6(11): 889-896. http://dx.doi.org/10.14202/vetworld.2013.889-896
 |  
                  |  |  
                  | 36. Aparicio, C. and Bitencourt, M.D. (2004) Modelagem 
                  espacial de zonas de risco da leishmaniose tegumentar 
                  americana. Rev. Saúde Públ., 38(4): 511-516. http://dx.doi.org/10.1590/s0034-89102004000400005
 |  
                  |  |  
                  | 37. Kalluri, S., Gilruth, P., Rogers, D. and Szczur, M. (2007) 
                  Surveillance of arthropod vector-borne infectious diseases 
                  using remote sensing techniques: A review. PLoS Pathog., 
                  3(10): e116. doi:10.1371/journal.ppat.0030116. http://dx.doi.org/10.1371/journal.ppat.0030116
 |  
                  |  |  
                  | 38. Carreira, J.C.A., Magalhães, M.A.F. and Silva, A.V.M. 
                  (2014) The geospatial approach on eco-epidemiological studies 
                  of leishmaniasis. In: Claborn, D. Leishmaniasis – Trends in 
                  Epidemiology, Diagnosis and Treatment. InTech, Rijeka. 
                  p125-145. dx.doi.org/10.5772/57210. http://dx.doi.org/10.5772/57210
 |  
                  |  |  
                  | 39. Porto, T.J., Carnaval, A.C. and Rocha, P.L.B. (2013) 
                  Evaluating forest refugial models using species distribution 
                  models, model filling and inclusion: A case study with 14 
                  Brazilian species. Divers. Distrib., 19: 330-340. http://dx.doi.org/10.1111/j.1472-4642.2012.00944.x
 |  
                  |  |  
                  | 40. Lourenço, W.R. (2002) Scorpions of Brazil. Les Editions de 
                  l'IF, Paris. PMCid:PMC339563
 |  
                  |  |  
                  | 41. Souza, C.A.R., Candido, D.M., Lucas, S.M. and Brescovit, 
                  A.D. (2009) On the Tityus stigmurus complex (Scorpiones, 
                  Buthidae). Zootaxa, 1987: 1-38. |  
                  |  |  
                  | 42. Almeida, R.B. (2010) Atlas das espécies de Tityus C.L. 
                  Koch, 1836 (Scorpiones, Buthidae) do Brasil. Master's Thesis 
                  in Biological Sciences. Submitted to Universidade de São 
                  Paulo, São Paulo, Brazil. |  |