| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
              
              
(Published online: 
              
              
              21-05-2015) 
              
              14.
              
              
              Co-culture: A quick approach for isolation of street rabies virus 
              in murine neuroblastoma cells 
              - 
              A. 
              Sasikalaveni, K. G. Tirumurugaan, S. Manoharan, G. Dhinakar Raj 
              and K. Kumanan 
              
              Veterinary World, 8(5): 636-639   
              
   
                
                
doi: 
              10.14202/vetworld.2015.636-639   
              A. Sasikalaveni: 
              Department of Animal Biotechnology, Madras Veterinary College, 
              Tamil Nadu Veterinary and Animal Sciences University, Chennai - 
              600 007, Tamil Nadu, India; 
              
              venisasikala@gmail.com 
              K. G. Tirumurugaan: 
              Department of Animal Biotechnology, Madras Veterinary College, 
              Tamil Nadu Veterinary and Animal Sciences University, Chennai - 
              600 007, Tamil Nadu, India; 
              
              tirumurugaankg@tanuvas.org.in 
              S. Manoharan: 
              Department of Animal Biotechnology, Madras Veterinary College, 
              Tamil Nadu Veterinary and Animal Sciences University, Chennai - 
              600 007, Tamil Nadu, India; 
              
              ulagaimano@yahoo.com 
              G. Dhinakar Raj: 
              Department of Animal Biotechnology, Madras Veterinary College, 
              Tamil Nadu Veterinary and Animal Sciences University, Chennai - 
              600 007, Tamil Nadu, India; 
              
              dirtrpvb@tanuvas.org.in 
              K. Kumanan: Dean, 
              Faculty of Basic Sciences, Tamil Nadu Veterinary and Animal 
              Sciences University, Madhavaram Milk Colony, Chennai - 600 051, 
              Tamil Nadu, India; 
              
              kumananrani@gmail.com    
              Received: 30-12-2014, 
              
              Revised: 
              
              14-04-2015, Acceped:
              
              
              19-04-2015, Published 
              online: 
              
              21-05-2015   
              
              
              Corresponding author:K. G. Tirumurugaan, e-mail: tirumurugaankg@tanuvas.org.in 
 
              Citation: Sasikalaveni A, Tirumurugaan KG, Monoharan S, Dhinakar Raj G, 
              Kumanan K (2015) Co-culture: A quick approach for isolation of 
              street rabies virus in murine neuroblastoma cells, Veterinary 
              World 8(5):636-639. 
 
              Abstract 
 
              Background: Laboratory 
              detection of rabies in most cases is based on detection of the 
              antigen by fluorescent antibody test, however, in weak positive 
              cases confirmative laboratory diagnosis depends on widely accepted 
              mouse inoculation test. Cell lines like neuroblastoma have been 
              used to isolate the virus with greater success not only to target 
              for diagnosis, but also for molecular studies that determine the 
              epidemiology of the circulating street rabies strains and in 
              studies that look at the efficiency of the developed monoclonal 
              antibodies to neutralize the different rabies strains. Due to the 
              recent issues in obtaining ethical permission for mouse 
              experimentation, and also the passages required in the cell lines 
              to isolate the virus, we report herewith a co-culture protocol 
              using the murine neuroblastoma (MNA) cells, which enable quicker 
              isolation of street rabies virus with minimum passages.  
              Objective: This study is not to have an alternative diagnostic 
              assay, but an approach to produce sufficient amount of rabies 
              virus in minimum passages by a co-culture approach in MNA cells.
               
              Materials and Methods: The MNA cells are co-cultured by 
              topping the normal cells with infected cells every 48 h and the 
              infectivity was followed up by performing direct 
              fluorescent-antibody test.  
              Results: The co-culture approach results in 100% infectivity 
              and hence the use of live mouse for experimentation could be 
              avoided.  
              Conclusion: Co-culture method provides an alternative for the 
              situations with limited sample volume and for the quicker 
              isolation of virus which warrants the wild type strains without 
              much modification.  
              Keywords: co-culture, isolation, fluorescent-antibody test, 
              murine neuroblastoma, rapid tissue culture infection test.  
 
              References 
 
                
                  | 1. Kaplan, M.M. (1973) An overview of laboratory techniques in 
                  the diagnosis and prevention of rabies and in rabies research. 
                  In: Kaplan, M.M. and Koprowski, H. editors. Laboratory 
                  Techniques in Rabies. 3rd ed. World Health Organization, 
                  Geneva. p21. PMid:4715880
 |  
                  |  |  
                  | 2. World Health Organisation. (1984) Report of the 2nd WHO 
                  Consultation on Monoclonal Antibodies for Rabies Diagnosis and 
                  Research. WHO, Germany. |  
                  |  |  
                  | 3. Iwasaki, Y.I. and Clark, H.F. (1977) Rabies virus infection 
                  in mouse neuroblastoma cells. Lab. Invest., 36(6): 578-584. PMid:68172
 |  
                  |  |  
                  | 4. Rudd, R.J. and Trimarchi, C.V. (1989) Development and 
                  evaluation of an in vitro virus isolation procedure as a 
                  replacement for the mouse inoculation test in rabies 
                  diagnosis. J. Clin. Microbiol., 27(11): 2522-2528. PMid:2681254 PMCid:PMC267070
 |  
                  |  |  
                  | 5. Hanlona, C.A., DeMattosa, C.A., DeMattosa, C.C., Niezgodaa, 
                  M., Hooperb, D.C., Koprowskib, H., Notkinsc, A. and 
                  Rupprechta, C.E. (2001) Experimental utility of rabies virus 
                  neutralizing human monoclonal antibodies in post exposure 
                  prophylaxis. Vaccine, 19(28-29): 3834-3842. http://dx.doi.org/10.1016/S0264-410X(01)00135-9
 |  
                  |  |  
                  | 6. Goudsmit, J., Marissen, W.E., Weldon, W.C., Niezgoda, M., 
                  Hanlon, C.A., Rice, A.B., Kruif, J.d., Dietzschold, B., 
                  Bakker, A.B.H. and Rupprecht, C.E. (2006) Comparison of an 
                  Anti – Rabies human monoclonal antibody combination with human 
                  polyclonal anti-rabies immune globulin. J. Infect. Dis., 
                  193(6): 796-801. http://dx.doi.org/10.1086/500470
 PMid:16479514
 |  
                  |  |  
                  | 7. Madusuadhana, S.N., Malavalli, B.V., Thankappan, U.P., 
                  Sundramoorthy, S., Belludi, A.Y., Pulagumbaly, S.B. and 
                  Sanyal, S. (2014) Development and evaluation of new 
                  immunohistochemistry based test for the detection of rabies 
                  virus neutralizing antibodies. Hum. Vaccin. Immunother., 
                  10(5): 1359-1365. http://dx.doi.org/10.4161/hv.28042
 PMid:24583787
 |  
                  |  |  
                  | 8. Chander, V., Singh, R.P. and Verma, P.C. (2012) Development 
                  of monoclonal antibodies suitable for rabies virus antibody 
                  and antigen detection. Indian J. Virol., 23(3): 317-325. http://dx.doi.org/10.1007/s13337-012-0096-x
 PMid:24293819 PMCid:PMC3550790
 |  
                  |  |  
                  | 9. Mani, R.S. and Madusudana, S.N. (2013) Laboratory diagnosis 
                  of human rabies: Recent Advances. Sci. World J., 2013: 1-10. http://dx.doi.org/10.1155/2013/569712
 PMid:24348170 PMCid:PMC3848253
 |  
                  |  |  
                  | 10. Favi, M., Roos, O. and Yung, V. (1992) Evaluación de la 
                  técnica de cultivos cellular esfrente a la inoculación en 
                  ratoneslactantes en el diag¬nóstico de rabia Evaluation of the 
                  cell culture technique against inoculation in suckling mice in 
                  the diagnosis of rabies. Av. Cienc. Vet., 7(2): 172-179. |  
                  |  |  
                  | 11. OIE – Organization for Animal Health. (20141) Manual for 
                  diagnostic test and vaccines for terrestrial animals. 
                  Available from: 
                  http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.13_RABIES.pdf. 
                  Last accessed on 08-04-2015. |  
                  |  |  
                  | 12. Jayakumar, R., Thirumurugaan, K.G. and Raj, G.D. (2006) 
                  Phylogenetic characterization of rabies virus isolates from 
                  Chennai, India. Acta Virol., 50(4): 275-276. PMid:17177615
 |  
                  |  |  
                  | 13. Noguchi, H. (1913) Contribution to the cultivation of 
                  parasite of rabies. J. Exp. Med., 18(3): 314. http://dx.doi.org/10.1084/jem.18.3.314
 PMid:19867707 PMCid:PMC2125063
 |  
                  |  |  
                  | 14. Levaditi, C. (1913) Virus rabiqueet culture des cellules 
                  in vitro. C R S Soc. Biol., 75: 505-509. |  
                  |  |  
                  | 15. Larghi, O.P., Mebel, A.E., Lazara, L. and Savy, V.L. 
                  (1975) Sensitivity of BHK-21 cells supplemented with 
                  diethylaminoethyl-dextran for detection of street rabies virus 
                  in saliva samples. J. Clin. Microbiol., 3: 243-245. |  
                  |  |  
                  | 16. Rudd, R.J. and Trimarchi, C.V. (1987) Comparison of 
                  sensitivity of BHK-21 and murine neuroblastoma cells in the 
                  isolation of a street strain rabies virus. J. Clin. 
                  Microbiol., 25(8): 1456-1458. PMid:3305560 PMCid:PMC269247
 |  
                  |  |  
                  | 17. Chabra, M., Mittal, V., Jaiswal, R., Malik, S. and Gupta, 
                  M. (2007) Development and evaluation of an in vitro isolation 
                  of street rabies virus in mouse neuroblastoma cells as 
                  compared to conventional tests used for diagnosis of rabies. 
                  Indian J. Med. Microbiol., 25(3): 263-266. http://dx.doi.org/10.4103/0255-0857.34772
 |  
                  |  |  
                  | 18. Umoh, J.U. and Blenden, D.C. (1983) Comparison of primary 
                  skunk brain and kidney and racoon kidney cells with 
                  established cell lines for isolation and propagation of street 
                  rabies virus. Infect. Immunol., 41(3): 1370-1372. PMid:6885165 PMCid:PMC264649
 |  
                  |  |  
                  | 19. Webster, W.A. and Casey, G.A. (1988) Diagnosis of rabies 
                  infection. In: Campbell, J.B. and Charlton, K.M., editor. 
                  Rabies. Kluwer Academic Publishers, Boston. p201-222. http://dx.doi.org/10.1007/978-1-4613-1755-5_9
 |  
                  |  |  
                  | 20. Fontana, D., Kratje, R., Etcheverrigaray, M. and Priet, C. 
                  (2014) Rabies virus-like particles expressed in HEK293 cells. 
                  Vaccine, 32(24): 2799-2804. http://dx.doi.org/10.1016/j.vaccine.2014.02.031
 PMid:24631077
 |  
                  |  |  
                  | 21. Yamada, K., Noguchi, K. and Nishizono, A. (2014) 
                  Characterization of street rabies virus variants with an 
                  additional N-glycan at position 247 in the glycoprotein. Arch. 
                  Virol., 159(2): 207-216. http://dx.doi.org/10.1007/s00705-013-1805-5
 PMid:23921623
 |  
                  |  |  
                  | 22. Wang, F.X., Zhang, S.Q., Zhu, H.W., Yang, Y., Sun, N., 
                  Tan, B., Li, Z.G., Cheng, S.P., Fu, Z.F. and Wen, Y.J. (2014) 
                  Recombinant rabies virus expressing the H protein of canine 
                  distemper virus protects dogs from the lethal distemper 
                  challenge. Vet. Microbiol., 174(3-4): 362-71. http://dx.doi.org/10.1016/j.vetmic.2014.10.023
 PMid:25465178
 |  
                  |  |  
                  | 23. Dastkhosh, M., Rahimi, P., Haghighat, S., Biglari, P., 
                  Howaizi, N., Saghiri, R. and Roohandeh, A. (2014) Cell culture 
                  extraction and purification of rabies virus nucleoprotein. 
                  Jundishapur. J. Microbiol., 7(9): e11734. http://dx.doi.org/10.5812/jjm.11734
 |  
                  |  |  
                  | 24. Matsumoto, T., Yamada, K. and Noguchi, K. (2010) Isolation 
                  and characterization of novel human monoclonal antibodies 
                  possessing neutralizing ability against rabies virus. 
                  Microbiol. Immunol., 54(11): 673-683. http://dx.doi.org/10.1111/j.1348-0421.2010.00262.x
 PMid:21044141
 |  
                  |  |  
                  | 25. Thirumeni Nagarajan., Wilfred E Marissen. and Charles E. 
                  Rupprecht. (2014) Monoclonal antibodies for the prevention of 
                  rabies: theory and clinical practice. Antibody Tech. J., 
                  2014(4): 1-12. http://dx.doi.org/10.2147/ANTI.S33533
 |  
                  |  |  
                  | 26. Appel, M.J., Pearce-Kelling, S. and Summers, B.A. (1992) 
                  Dog lymphocyte cultures facilitate the isolation and growth of 
                  virulent Canine distemper virus. J. Vet. Diag. Invest., 4(3): 
                  258-263. http://dx.doi.org/10.1177/104063879200400306
 |  
                  |  |  
                  | 27. Sharma, U.K., Song, H.F., Willingham, F.F., Hannig, J., 
                  Flexner, C., Farzadegan, H., Nicolau, C. and Schwartz, D.H. 
                  (1997) Diagnosis of human immunodeficiency virus infection 
                  using citrated whole blood. Clin. Diagn. Lab. Immunol., 4(3): 
                  261-263. PMid:9144360 PMCid:PMC170515
 |  
                  |  |  
                  | 28. Osterhaus, A.D.M., Broeders, H.W.J., Visser, I.K.G., 
                  Teppema, J.S. and Vedder, E.J. (1990) Isolations of an 
                  orthopoxvirus from pox-like lesions of grey seal (Halichoerus 
                  Grypus). Vet. Rec., 127(4): 91-92. PMid:2169668
 |  
                  |  |  
                  | 29. Sapkal, G.N., Wairagkar, N.S., Ayachit, V.M., Bondre, V.P. 
                  and Gore, M.M. (2007) Detection and isolation of Japanese 
                  encephalitis virus from blood clots collected during the acute 
                  phase of infection. Am. J. Trop. Med. Hyg., 77(6): 1139-1145. PMid:18165537
 |  |