| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 31-12-2016)  
              26. 
				
              
              Altered oxidative stress and carbohydrate 
              metabolism in canine mammary tumors - 
              
              K. Jayasri, K. Padmaja and M. Saibaba 
              
              Veterinary World, 9(12): 1489-1492   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.1489-1492 
                
                
                K. Jayasri: 
                
                Department of Veterinary Biochemistry, College of Veterinary 
                Science, Tirupati, Andhra Pradesh, India; jayasrikanteti@yahoo.co.in 
              
              K. Padmaja: 
              
              Department of Veterinary Biochemistry, College of Veterinary 
              Science, Tirupati, Andhra Pradesh, India; kondetibicm@gmail.com 
              
              M. Saibaba: 
              
              Department of Surgery and Radiology, College of Veterinary 
              Science, Tirupati, Andhra Pradesh, India; drsaimvsc@gmail.com   
              
              Received: 25-06-2016, Accepted: 24-11-2016, Published online: 
              31-12-2016   
				
              	
              	Corresponding author: 
              	
				
                K. Jayasri, e-mail: jayasrikanteti@yahoo.co.in 
 
              Citation: 
              Jayasri K, Padmaja K, Saibaba M (2016) Altered oxidative stress 
              and carbohydrate metabolism in canine mammary tumors, 
              
              Veterinary World, 9(12): 
              1489-1492. 
 
              
				Abstract 
 
              
              
              Aim: 
              
              Mammary tumors are the most prevalent type of neoplasms in 
              canines. Even though cancer induced metabolic alterations are well 
              established, the clinical data describing the metabolic profiles 
              of animal tumors is not available. Hence, our present 
              investigation was carried out with the aim of studying changes in 
              carbohydrate metabolism along with the level of oxidative stress 
              in canine mammary tumors. 
              
              
              Materials and Methods: 
              
              Fresh mammary tumor tissues along with the adjacent healthy 
              tissues were collected from the college surgical ward. The levels 
              of thiobarbituric acid reactive substances (TBARS), glutathione, 
              protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 
              6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD) 
              were analyzed in all the tissues. The results were analyzed 
              statistically. 
              
              
              Results: 
              
              More than two-fold increase in TBARS and three-fold increase in 
              glutathione levels were observed in neoplastic tissues. Hexokinase 
              activity and hexose concentration (175%) was found to be 
              increased, whereas glucose-6-phosphatase (33%), fructose-1, 
              6-bisphosphatase (42%), and G6PD (5 fold) activities were reduced 
              in tumor mass compared to control. 
              
              
              Conclusion: 
              
              Finally, it was revealed that lipid peroxidation was increased 
              with differentially altered carbohydrate metabolism in canine 
              mammary tumors. 
              
              Keywords: 
              
              canine mammary tumor, fructose-1,6-bisphosphatase, 
              glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, 
              hexokinase, thiobarbituric reactive substances 
 
              References 
 
                
                  | 1. Kumaraguruparan, R., Balachandran, C., Manohar, B.M. and 
                  Nagini, S. (2005) Altered oxidant-antioxidant profile in 
                  canine mammary tumours. Vet. Res. Commun., 29(4): 287-296. https://doi.org/10.1023/B:VERC.0000048499.38049.4b
 |  
                  |  |  
                  | 2. Ray, G. and Hussain, S.A. (2002) Oxidants, antioxidants and 
                  carcinogenesis. Indian J. Exp. Biol., 40: 1213-1232. PMid:13677623
 |  
                  |  |  
                  | 3. Dang, V. (2012) Links between metabolism and cancer. Genes 
                  Dev., 26: 877-890. https://doi.org/10.1101/gad.189365.112
 PMid:22549953 PMCid:PMC3347786
 |  
                  |  |  
                  | 4. Cairns, R.A., Harris, I.S. and Mak, T.W. (2011) Regulation 
                  of cancer cell metabolism. Nat. Rev. Cancer, 11: 85-95. https://doi.org/10.1038/nrc2981
 PMid:21258394
 |  
                  |  |  
                  | 5. Frezza, C., Zheng, L., Tennant, D.A., Papkovsky, D.B., 
                  Hedley, B.A., Kalna, G., Watson, D.G. and Gottlieb, E. (2011) 
                  Metabolic profiling of hypoxic cells revealed a catabolic 
                  signature required for cell survival. Available from: http://www.dx.doi.org/10.1371/journal.pone.0024411. https://doi.org/10.1371/journal.pone.0024411
 |  
                  |  |  
                  | 6. Cardaci, S. and Ciriolo, M.R. (2012) TCA cycle defects and 
                  cancer: When metabolism tunes redox state. Int. J. Cell. 
                  Biol., 2012: 161837. https://doi.org/10.1155/2012/161837
 PMid:22888353 PMCid:PMC3408673
 |  
                  |  |  
                  | 7. Anastasiou, D., Poulogiannis, G., Asara, J.M., Boxer, M.B., 
                  Jiang, J.K., Shen, M., Bellinger, G., Sasaki, A.T., Locasale, 
                  J.W., Auld, D.S., Thomas, C.J., Vander Heiden, M.G. and 
                  Cantley, L.C. (2011) Inhibition of pyruvate kinase M2 by 
                  reactive oxygen species contributes to cellular antioxidant 
                  responses. Science, 334(6060): 1278-1283. https://doi.org/10.1126/science.1211485
 |  
                  |  |  
                  | 8. Ying, H., Kimmelman, A.C., Lyssiotis, C.A., Hua, S., Chu, 
                  G.C., Fletcher-Sananikone, E., Locasale, J.W., Son, J., Zhang, 
                  H., Coloff, J.L., Yan, H., Wang, W., Chen, S., Viale, A., 
                  Zheng, H., Paik, J.H., Lim, C., Guimaraes, A.R., Martin, E.S., 
                  Chang, J., Hezel, A.F., Perry, S.R., Hu, J., Gan, B., Xiao, 
                  Y., Asara, J.M., Weissleder, R., Wang, Y.A., Chin, L., Cantley, 
                  L.C. and DePinho, R.A. (2012) Oncogenic K-ras maintains 
                  pancreatic tumors through regulation of anabolic glucose 
                  metabolism. Cell, 149: 656-670. https://doi.org/10.1016/j.cell.2012.01.058
 PMid:22541435 PMCid:PMC3472002
 |  
                  |  |  
                  | 9. Wang, X., Li, X.J., Zhang, X.Q., Fan, R.T., Gu, H., Shi, 
                  Y.G. and Liu, H.T. (2015) Glucose-6-phosphate dehydrogenase 
                  expression is correlated with poor clinical prognosis in 
                  esophagealsquamous cell carcinoma. Eur. J. Surg. Oncol., 
                  41(10): 1293-1299. https://doi.org/10.1016/j.ejso.2015.08.155
 PMid:26329784
 |  
                  |  |  
                  | 10. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid 
                  peroxides in animal tissues by thiobarbituric acid reaction. 
                  Anal. Biochem., 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
 |  
                  |  |  
                  | 11. Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. 
                  Biochem. Biophys., 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
 |  
                  |  |  
                  | 12. Neibes, P. (1972) Determination of enzymes and degradation 
                  products of glycosaminoglycans metabolism in the serum of 
                  healthy and varicose subjects. Clin. Chem. Acta, 42: 399-408. https://doi.org/10.1016/0009-8981(72)90105-2
 |  
                  |  |  
                  | 13. Lowry, O.H., Rosenberg, N.J., Farr, A.L. and Randall, R.J. 
                  (1951) Protein measurement with folin phenol reagent. J. Biol. 
                  Chem., 193: 265-275. PMid:14907713
 |  
                  |  |  
                  | 14. Brandstrup, N., Kirk, J.E. and Bruni, C. (1957) 
                  Determination of hexokinase in tissues. J. Gerontol., 12: 
                  166-171. https://doi.org/10.1093/geronj/12.2.166
 PMid:13416554
 |  
                  |  |  
                  | 15. Koida, H. and Oda, T. (1959) Pathological occurence of 
                  glucose-6-phosphatase in liver disease. Clin. Chem. Acta, 4: 
                  554-561. https://doi.org/10.1016/0009-8981(59)90165-2
 |  
                  |  |  
                  | 16. Gancedo, J.M. and Gancedo, C. (1971) Fructose-1, 
                  6-bisphosphatase, phosphofructokinase and glucose-6-phosphate 
                  dehydrogenase from fermenting yeast. Arch. Microbiol., 76: 
                  132-138. |  
                  |  |  
                  | 17. Ellis, H.A. and Kirkman, H.N. (1961) A colorimetric method 
                  for assay of erythrocyte glucose-6-phosphate dehydrogenase. 
                  Proc. Soc. Exp. Biol. Med., 106: 607-609. https://doi.org/10.3181/00379727-106-26418
 |  
                  |  |  
                  | 18. Snedecor, G.W. and Cochran, W.G. (1994) Statistical 
                  Methods. 8th ed. Ames: Iowa State University Press. |  
                  |  |  
                  | 19. Karayannopoulou, M., Fytianou, A., Assaloumidis, N., 
                  Psalla, D., Savvas, I. and Kaldrymidou, E. (2013b) Lipid 
                  peroxidation in neoplastic tissue of dogs with mammary cancer 
                  fed with different kinds of diet. Turk. J. Vet. Anim. Sci., 
                  37: 449-453. https://doi.org/10.3906/vet-1211-7
 |  
                  |  |  
                  | 20. Macotpet, A., Suksawat, F., Sukon, P., Pimpakdee, K., 
                  Pattarapanwichien, E., Tangrassameeprasert, R. and Boonsirl, 
                  P. (2013) Oxidative stress in cancer-bearing dogs assessed by 
                  measuring serum malondialdehyde. BMC Vet. Res., 9: 101. https://doi.org/10.1186/1746-6148-9-101
 PMid:23663727 PMCid:PMC3654958
 |  
                  |  |  
                  | 21. Karayannopoulou, M., Fytianou, A., Assaloumidis, N., 
                  Psalla, D., Constantinidis, T.C., Kaldrymidou, E. and Koutinas, 
                  A.F. (2013a) Markers of lipid peroxidation and α-tocopherol 
                  levels in the blood and neoplastic tissue of dogs with 
                  malignant mammary gland tumors. Vet. Clin. Pathol., 42(3): 
                  323-328. https://doi.org/10.1111/vcp.12064
 PMid:23906434
 |  
                  |  |  
                  | 22. Szczubiał, M., Kankofer, M., Lopuszyński, W., Dabrowski, 
                  R. and Lipko, J. (2004) Oxidative stress parameters in bitches 
                  with mammary gland tumours. J. Vet. Med. A., 51(7-8): 336-340. https://doi.org/10.1111/j.1439-0442.2004.00647.x
 PMid:15533114
 |  
                  |  |  
                  | 23. Szczubiał, M., Kankofer, M., Albera, E., Łopuszyński, W. 
                  and Dąbrowski, R. (2008) Oxidative/antioxidative status of 
                  blood plasma in bitches with mammary gland tumours. B. Vet. I. 
                  Pulawy, 52: 255-259. |  
                  |  |  
                  | 24. Schumcaker, P.T. (2006) Reactive oxygen species in cancer 
                  cells: Live by the sword, die by the sword. Cancer Cell, 
                  10(3): 175-176. https://doi.org/10.1016/j.ccr.2006.08.015
 PMid:16959608
 |  
                  |  |  
                  | 25. Leonel, C., Gabriela, B., Jardim, B.V., Moschetta, M.G., 
                  Regiani, V.R., Oliveira, J.G. and Zuccari, D.A. (2014) 
                  Expression of glutathione, glutathione peroxidase and 
                  glutathione S-transferase pi in canine mammary tumors. BMC 
                  Vet. Res., 10: 49. https://doi.org/10.1186/1746-6148-10-49
 PMid:24565113 PMCid:PMC3975948
 |  
                  |  |  
                  | 26. Fogg, V.C., Lanning, N.J. and MacKeigan, J.P. (2011) 
                  Mitochondria in cancer: At the crossroads of life and death. 
                  Chin. J. Cancer, 30(8): 526-539. https://doi.org/10.5732/cjc.011.10018
 PMid:21801601 PMCid:PMC3336361
 |  
                  |  |  
                  | 27. Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: 
                  The next generation. Cell, 144: 646-674. https://doi.org/10.1016/j.cell.2011.02.013
 PMid:21376230
 |  
                  |  |  
                  | 28. Alvarez, J.V., Belka, G.K., Pan, T.C. and Chen, C.C. 
                  (2014) Oncogene pathway activation in mammary tumors dictates 
                  [18-F] FDG-PET uptake. Cancer Res., 74(24): 7583-7598. https://doi.org/10.1158/0008-5472.CAN-14-1235
 PMid:25239452 PMCid:PMC4342047
 |  
                  |  |  
                  | 29. Macheda, M.L., Rogers, S. and Best, J.D. (2005) Molecular 
                  and cellular regulation of glucose transporter (GLUT) proteins 
                  in cancer. J. Cell. Physiol., 202(3): 654-662. https://doi.org/10.1002/jcp.20166
 PMid:15389572
 |  
                  |  |  
                  | 30. Smith, T. (2000) Mammalian hexokinase and their abnormal 
                  expression in cancer. Br. J. Biomed. Sci., 57(2): 170-178. PMid:10912295
 |  
                  |  |  
                  | 31. Bryson, J.M. (2002) Increased hexokinase activity of 
                  either ectopic or endogenous origin protects renal epithelial 
                  cells against oxidant induced cell death. J. Biol. Chem., 277: 
                  11392-11400. https://doi.org/10.1074/jbc.M110927200
 PMid:11751868
 |  
                  |  |  
                  | 32. Jagadeesan, A.J., Langeswaran, K., Kumar, S.G., Revathy, 
                  R. and Balasubramanian, M.P. (2013) Chemopreventive potential 
                  of diogenin on modulating glycoproteins, TCA cycle enzymes, 
                  carbohydrate metabolising enzymes and biotransformation 
                  enzymes against N-methyl-N-nitrosourea induced mammary 
                  carcinogenesis. Int. J. Pharm. Sci., 5(4): 572-582. |  
                  |  |  
                  | 33. DeBeradinis, R.J., Sayed, N., Ditsworth, D. and Thompson, 
                  C.B. (2008) Brick by brick: Metabolism and tumor cell growth. 
                  Curr. Opin. Genet. Dev., 18: 54-61. https://doi.org/10.1016/j.gde.2008.02.003
 PMid:18387799 PMCid:PMC2476215
 |  |