| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 
				13-02-2016)  
              9. 
				
				
				Expression of biologically active bovine interleukin 7 and 
				evaluating the activity 
				
				in vitro - 
				
				J. Lijo, N. Vijay, H. J. Dechamma and G. R. Reddy 
              
              Veterinary World, 9(2): 160-165   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.160-165 
                
				  
				
				J. Lijo: 
				
				FMD Research Laboratory, Indian Veterinary Research Institute, 
				Hebbal, Bengaluru, Karnataka, India; lijo1john@gmail.com 
				
				N. Vijay: 
				
				FMD Research Laboratory, Indian Veterinary Research Institute, 
				Hebbal, Bengaluru, Karnataka, India; vijvetco@gmail.com 
				
				H. J. Dechamma: 
				
				FMD Research Laboratory, Indian Veterinary Research Institute, 
				Hebbal, Bengaluru, Karnataka, India; dechammahj@yahoo.com 
				
				G. R. Reddy: 
				
				FMD Research Laboratory, Indian Veterinary Research Institute, 
				Hebbal, Bengaluru, Karnataka, India; drreddygr@gmail.com   
				
				Received: 28-09-2015, Revised: 26-12-2015, Accepted: 31-12-2015, 
				Published online: 13-02-2016 
				  
				
              	
              	Corresponding author:G. R. Reddy, e-mail: drreddygr@gmail.com 
 
              Citation: Lijo J, Vijay N, Dechamma HJ, Reddy GR (2016) Expression of 
				biologically active bovine interleukin 7 and evaluating the 
				activity 
				
				in vitro,
				
				
				Veterinary World 9(2); 
				160-165. 
 
              
				Abstract 
 
				
				
				Aim: 
				
				Interleukin 7 (IL-7) is a 
				
				ϒc 
				family cytokine involved in the homeostatic proliferation and 
				maintenance of immune cells. In the present study, we report the 
				expression of bovine IL-7 (bIL-7) in 
				
				Escherichia coli 
				
				and evaluated for its biological activity. 
				
				
				Materials and Methods: 
				
				The sequence coding for bIL-7 (mature protein) was amplified 
				from primary bovine kidney cell culture and cloned into pET28-a 
				vector and expressed in 
				
				E.coli 
				
				(BL 21 DE3). The expressed protein was purified by nickel-nitrilotriacetatechromatography, 
				and the reactivity of the protein was confirmed by western 
				blotting using monoclonal antibodies raised against human IL-7. 
				The biological activity of expressed bIL-7 was evaluated by 
				analyzing its effect on the expression of a nuclear factor for 
				activated T-cells c1 (NFATc1), B-cell lymphoma 2 (Bcl2), 
				suppressor of cytokine signaling 3 (SOCS3) molecules in bovine 
				peripheral blood mononuclear cells (PBMCs) by quantitative 
				polymerase chain reaction. Ability of the expressed protein was 
				also analyzed by its effect on phosphorylating signal transducer 
				and activator 3 (STAT3) molecule by immunostaining in human 
				embryonic kidney cells 293 (HEK293) cells. 
				
				
				Results: 
				
				The bIL-7 was able to induce the expression of Bcl2 and 
				NFATc1expression in bovine PBMCs by 7 and 5-folds, respectively, 
				whereas a 2-fold decrease was observed in the case of SOCS3 
				expression. Immunostaining studies in HEK293 cells using 
				antihuman phospho-STAT3 showed activation and nuclear 
				translocation of STAT3 molecule on bIL-7 treatment. 
				
				
				Conclusion: 
				
				bIL-7 gene was successfully amplified, cloned, and expressed in 
				a prokaryotic expression system. The biological activity study 
				showed that the 
				
				E.coli 
				
				expressed bIL-7 protein is biologically active. Considering the 
				role of IL-7 in T-cell homeostasis and memory cell generation, 
				this molecule can be used for enhancing the vaccine response and 
				that has to be proved by further experiments. 
				
				Keywords: 
				
				B-cell lymphoma 2, nuclear factor for activated T-cells c1, 
				recombinant bovine interleukin 7, signal transducer and 
				activator 3. 
 
              References 
 
				
					| 1. Jiang, Q., Li, Q.W., Aiello, F.B., Mazzucchelli, R., 
					Asefa, B., Annette, R., Khaled, A.R. and Durum, S.K. (2005) 
					Cell biology of IL-7, a key lymphotropin. Cytokine Growth F 
					R., 16: 513-533. http://dx.doi.org/10.1016/j.cytogfr.2005.05.004
 PMid:15996891
 |  
					|  |  
					| 2. Amos, C.L., Woetmann, A., Nielsen, M., Geisler, C., Odum, 
					N., Brown, B.L. and Dobson, P.R.M. (1998) Therole of caspase 
					3 and BclxL in the action of interleukin 7 (IL-7): A 
					survival factor in activated human T cells. Cytokine, 
					10:662-668. http://dx.doi.org/10.1006/cyto.1998.0351
 PMid:9770327
 |  
					|  |  
					| 3. Mazzucchelli, R. and Durum, S.K. (2007) Interleukin-7 
					receptor expression: Intelligent design. Nat. Rev.Immunol., 
					7:144-154. http://dx.doi.org/10.1038/nri2023
 PMid:17259970
 |  
					|  |  
					| 4. Seckinger, P. andFougereau, M. (1994) Activation of src 
					family kinases in human pre-B cells by IL-7. J.Immunol., 
					153: 97-109. PMid:7515933
 |  
					|  |  
					| 5. VonFreeden-Jeffry, U., Vieira, P., Lucian, L.A., McNeil, 
					T., Burdach, S.E. and Murray, R. (1995) Lymphopenia in 
					interleukin (IL)-7 gene-deleted mice identifies IL-7 as a 
					non redundant cytokine. J. Exp. Med., 181:1519-1526. http://dx.doi.org/10.1084/jem.181.4.1519
 |  
					|  |  
					| 6. Chetoui, N., Boisvert, M., Gendron, S. andAoudjit, F. 
					(2009) Interleukin 7 promotes the survival of human CD4+ 
					effector/memory T cells by up- regulating Bcl-2 proteins and 
					activating the JAK/STAT signaling pathway. Immunology, 130: 
					418-426. http://dx.doi.org/10.1111/j.1365-2567.2009.03244.x
 PMid:20465565 PMCid:PMC2913221
 |  
					|  |  
					| 7. Opferman, J.T., Letai, A., Beard, C., Sorcinelli, M.D., 
					Ong, C.C. andKorsmeyer, S.J. (2003) Development and 
					maintenance of B and T lymphocytes requires antiapoptotic 
					MCL-1. Nature, 426:671-676. http://dx.doi.org/10.1038/nature02067
 PMid:14668867
 |  
					|  |  
					| 8. Rathmell, J.C., Farkash, E.A., Gao, W. and Thompson, 
					C.B.(2001) IL-7 enhances the survival and maintains the size 
					of naive T cells. J.Immunol., 167:6869-6876. http://dx.doi.org/10.4049/jimmunol.167.12.6869
 PMid:11739504
 |  
					|  |  
					| 9. Khaled, A.R. andDurum, S.K. (2003) Death and baxes: 
					Mechanisms of lymphotrophic cytokines. Immunol. Rev., 
					193:48-57. http://dx.doi.org/10.1034/j.1600-065X.2003.00050.x
 PMid:12752670
 |  
					|  |  
					| 10. Bradley, L.M., Haynes, L. and Swain, S.L. (2005) IL-7: 
					Maintaining T-cell memory and achieving homeostasis. Trends 
					Immunol, 26(3): 172-176. http://dx.doi.org/10.1016/j.it.2005.01.004
 PMid:15745860
 |  
					|  |  
					| 11. Cui, G., Staron, M.M., Gray, S.M., Ho, P.C., Amezquita, 
					R.A., Wu, J. and Kaech, S.M. (2015) IL-7 induced glycerol 
					transport and TAG synthesis promotes memory CD8+ T cells 
					longevity. Cell, 161: 750-761. http://dx.doi.org/10.1016/j.cell.2015.03.021
 PMid:25957683 PMCid:PMC4704440
 |  
					|  |  
					| 12. McElory, C.A., Holland, P.J., Zhao, P., Lim, J.M., 
					Wells, L., Eisenstein, E. and Walsh, S.T.R. (2012) 
					Structural reorganization of the interleukin-7 signaling 
					complex. Proc. Nat. Acad. Sci.,109(7): 2503-2508. http://dx.doi.org/10.1073/pnas.1116582109
 PMid:22308406 PMCid:PMC3289338
 |  
					|  |  
					| 13. Livak, K.J. andSchmittgen, T.D. (2001) Analysis of 
					relative gene expression data using real time quantitative 
					PCR and the 2-∆∆cT method. Methods, 25: 402-402. http://dx.doi.org/10.1006/meth.2001.1262
 PMid:11846609
 |  
					|  |  
					| 14. Greyson, J.M., Zajac, A.J.A. and Ahmed, R. (2000) 
					Increased expression of Bcl2 in antigen specific memory CD8+ 
					T cells. J.Immunol., 164: 3950-3954. http://dx.doi.org/10.4049/jimmunol.164.8.3950
 |  
					|  |  
					| 15. Serfling, E., Siebelt, F.B., Chuvpilo, S., Jankevies, 
					E., Hessling, S.K., Twardzik, K.T. andAvots, A. (2000) The 
					role of NF-AT transcription factors in T cell activation and 
					differentiation. Biochem.Biophys.Acta, 1498: 1-18. http://dx.doi.org/10.1016/S0167-4889(00)00082-3
 |  
					|  |  
					| 16. Macian, F. (2005) NFAT proteins: Key regulators of 
					T-cell development and function. Nat.Rev.Immunol.,5: 
					472-484. http://dx.doi.org/10.1038/nri1632
 PMid:15928679
 |  
					|  |  
					| 17. Patra, A.K., Avots, A., Zahedi, R.P., Schuler, T., 
					Sickmann, A., Bommhardt, U. andSerfling, E. (2013)An 
					alternative NFATC-activation pathway mediated by IL-7 is 
					critical for early thymocyte development. Nat.Immunol., 14: 
					127-135. http://dx.doi.org/10.1038/ni.2507
 PMid:23263556
 |  
					|  |  
					| 18. Pellegrini, M., Calzascia, T., Toe, J.G., Preston, S.P., 
					Lin, A.E., Elford, A.R., Shahinian,A., Lang, P.A., Morre, 
					M., Assouline, B., Lahl,K., Sparwasser, T., Tedder,T.F., 
					Paik, J.H., Depinho, R.A., Basta, S., Ohashi, P.S. andMak, 
					T.W. (2011) IL-7 engages multiple mechanisms to overcome 
					chronic viral infection and limit organ pathology. Cell, 
					144: 601-613. http://dx.doi.org/10.1016/j.cell.2011.01.011
 PMid:21295337
 |  
					|  |  
					| 19. Chou, W.C., Levy, D.E. and Lee, C.K. (2006) STAT3 
					positively regulates an early step in B cell development. 
					Blood, 108(9): 3005-3011. http://dx.doi.org/10.1182/blood-2006-05-024430
 PMid:16825489 PMCid:PMC1895520
 |  
					|  |  
					| 20. Michel, M.L., Pang, D.J., Haque, S.F.Y., Potocnik, A.J., 
					Pennington, D.J. andHayday, A.C. (2012) Interleukin 7 (IL-7) 
					selectively promotes mouse and human IL-17 producing ϒδ 
					cell. Proc. Nat. Acad. Sci., 109(43): 17549-17554. http://dx.doi.org/10.1073/pnas.1204327109
 PMid:23047700 PMCid:PMC3491488
 |  
					|  |  
					| 21. Hand, T.W., Cui, W., Jung, Y.W., Sefik, E., Joshi, N.S., 
					Chandele, A., Liu, Y. and Kaech, S.M. (2010) Differential 
					effects of STAT5 and PI3/AKT signalling on effector and 
					memory CD8 T cell survival. Proc. Nat. Acad. Sci.,107(38): 
					16601-16606. http://dx.doi.org/10.1073/pnas.1003457107
 PMid:20823247 PMCid:PMC2944719
 |  
					|  |  
					| 22. Park, S.H., Song,M.Y., Nam, H.J., Im, S.J. and Sung, 
					Y.C. (2010)Codelivery of IL-7 augments multigenic HCV DNA 
					vaccine induced antibody as well as broad T cel response in 
					cynomolgus monkeys. Immune Netw.,10(6):198-205. http://dx.doi.org/10.4110/in.2010.10.6.198
 PMid:21286380 PMCid:PMC3026939
 |  
					|  |  
					| 23. Seo, Y.B., Im, S.J., Namkoong, H., Kim, S.W., Choi, 
					Y.W., Kang, M.C., Lim, H.S., Jin, H.T., Yang, S.H., Cho, 
					M.L., Kim, Y.M., Lee, S.W., Choi, Y.K., Surh, C.D. and Sung, 
					Y.C. (2014) Crucial role of IL-7 in the development of T 
					follicular helper T cells as well as the induction of 
					humoral immunity. J.Virol.,88(16): 8998-9009. http://dx.doi.org/10.1128/JVI.00534-14
 PMid:24899182 PMCid:PMC4136280
 |  
					|  |  
					| 24. Limaye, A., Iketani, A., Boohaker, R., Oyer, J., Nemec, 
					K., Solh, M., Copik, A. and Khaled, A.R. (2013) A modified 
					IL-7 protein is a potent agent for immune reconstitution. 
					Cytokine, 63(3): 282. http://dx.doi.org/10.1016/j.cyto.2013.06.169
 |  
					|  |  
					| 25. Kimura, M.Y., Pobezinsky, L.A., Guinter, T.I., Thomas, 
					J., Adams, A., Park, J.H., Tai, X. and Singer, A. (2013) 
					IL-7 signalling must be intermittent, not continuous, during 
					CD8+ T cell homeostasis to promote cell survival instead of 
					cell death. Nat. Immunol., 14(2):143-151. http://dx.doi.org/10.1038/ni.2494
 PMid:23242416 PMCid:PMC3552087
 |  |