| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 26-07-2016)  
              15. 
				
				
				Effect of oral administration of Bacillus coagulans B37 
				and Bacillus pumilus B9 strains on fecal coliforms, 
				Lactobacillus and Bacillus spp. in rat animal model - 
				
				Lopamudra Haldar and D. N. Gandhi 
              
              Veterinary World, 9(7): 766-772   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.766-772 
                
				  
				
				Lopamudra Haldar: 
				
				Department of Basic Sciences, Faculty of Science and Technology, 
				ICFAI University, Kamalghat - 799 210, Tripura, India; mohor7@gmail.com 
				
				D. N. Gandhi: 
				
				Dairy Microbiology Division, National Dairy Research Institute, 
				Karnal - 132 001, Haryana, India; DNG: dngandhi@rediffmail.com   
				
				Received: 18-03-2016, Accepted: 16-06-2016, Published: 
				26-07-2016    
				
              	
              	Corresponding author: 
              	
				
				Lopamudra Haldar, e-mail: mohor7@gmail.com 
 
              Citation: 
				
				Haldar L, Gandhi DN (2016) Effect of oral administration of 
				Bacillus coagulans B37 and Bacillus pumilus B9 
				strains on fecal coliforms, Lactobacillus and Bacillus
				spp. in rat animal model, Veterinary World, 9(7): 
				766-772. 
 
              
				Abstract 
 
				
				
				Aim: 
				
				To investigate the effect of oral administration of two 
				Bacillus strains on fecal coliforms, Lactobacillus 
				and Bacillus spp. in rat animal model.  
				
				
				Materials and Methods: 
				
				An in vivo experiment was conducted for 49-day period on 
				36 adult male albino Wister rats divided equally into to four 
				groups. After 7-day adaptation period, one group (T1) was fed on 
				sterile skim milk along with basal diet for the next 28 days. 
				Second (T2) and (T3) groups received spore biomass of 
				Bacillus coagulans B37 and Bacillus pumilus B9, 
				respectively, suspended in sterilized skim milk at 8-9 log 
				colony-forming units/ml plus basal diet for 28 days, while 
				control group (T4) was supplied with clean water along with 
				basal diet. There was a 14-day post-treatment period. A total of 
				288 fecal samples (8 fecal collections per rat) were collected 
				at every 7-day interval starting from 0 to 49 days and subjected 
				to the enumeration of the counts of coliforms and lactobacilli 
				and Bacillus spores using respective agar media. In 
				vitro acid and bile tolerance tests on both the strains were 
				performed.  
				
				
				Results: 
				
				The rats those (T2 and T3) received either B. coagulans 
				B37 or B. pumilus B9 spore along with non-fermented skim 
				milk showed decrease (p<0.01) in fecal coliform counts and 
				increase (p<0.05) in both fecal lactobacilli and Bacillus 
				spore counts as compared to the control group (T4) and the group 
				fed only skim milk (T1). In vitro study indicated that 
				both the strains were found to survive at pH 2.0 and 3.0 even up 
				to 3 h and tolerate bile up to 2.0% concentration even after 12 
				h of exposure.  
				
				
				Conclusions: 
				
				This study revealed that oral administration of either B. 
				coagulans B37 or B. pumilus B9 strains might be 
				useful in reducing coliform counts accompanied by concurrent 
				increase in lactobacilli counts in the intestinal flora in rats.
				 
				
				Keywords: 
				
				acid salt tolerance, antibacterial activity, Bacillus 
				coagulans, Bacillus pumilus, bile salt tolerance, 
				probiotics. 
 
              References 
 
				
					| 1. FAO/WHO. (2002) Guidelines for the Evaluation of 
					Probiotics in Food. Report of a Joint FAO/WHO Working Group 
					on Drafting Guidelines for Evaluation of Probiotics in Food. 
					London, Ontario, Canada. April 30 and May 01, 2002. 
					Available from: 
					http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. 
					Last accessed on 14/03/16. |  
					|  |  
					| 2. Butel, M.J. (2014) Probiotics, gut microbiota and health. 
					Med. Mal. Infect., 44(1): 1-8. http://dx.doi.org/10.1016/j.medmal.2013.10.002
 PMid:24290962
 |  
					|  |  
					| 3. Martinez, R.C., Bedani, R. and Saad, S.M. (2015) 
					Scientific evidence for health effects attributed to the 
					consumption of probiotics and prebiotics: An update for 
					current perspectives and future challenges. Br. J. Nutr., 
					114(12): 1993-2015. http://dx.doi.org/10.1017/S0007114515003864
 PMid:26443321
 |  
					|  |  
					| 4. Kumari, A., Catanzaro, R. and Marotta, F. (2011) Clinical 
					importance of lactic acid bacteria: A short review. Acta 
					Biomed., 82(3): 177-180. PMid:22783712
 |  
					|  |  
					| 5. Cutting, S.M. (2011) Bacillus probiotics. Food Microbiol., 
					28(2): 214-220. http://dx.doi.org/10.1016/j.fm.2010.03.007
 PMid:21315976
 |  
					|  |  
					| 6. Bader, J., Albin, A. and Stahl, U. (2012) Spore-forming 
					bacteria and their utilisation as probiotics. Benef. 
					Microbes, 3(1): 67-75. http://dx.doi.org/10.3920/BM2011.0039
 PMid:22348911
 |  
					|  |  
					| 7. Lefevre, M., Racedo, S.M., Ripert, G., Housez, B., 
					Cazaubiel, M., Maudet, C., Jüsten, P., Marteau, P. and 
					Urdaci, M.C. (2015) Probiotic strain Bacillus subtilis CU1 
					stimulates immune system of elderly during common infectious 
					disease period: A randomized, double-blind 
					placebo-controlled study. Immun. Ageing, 12: 24. http://dx.doi.org/10.1186/s12979-015-0051-y
 |  
					|  |  
					| 8. Peng, H., Wang, J.Q., Kang, H.Y., Dong, S.H., Sun, P., 
					Bu, D.P. and Zhou, L.Y. (2012) Effect of feeding Bacillus 
					subtilis natto fermentation product on milk production and 
					composition, blood metabolites and rumen fermentation in 
					early lactation dairy cows. J. Anim. Physiol. Anim. Nutr. 
					(Berl)., 96(3): 506-512. http://dx.doi.org/10.1111/j.1439-0396.2011.01173.x
 PMid:21635575
 |  
					|  |  
					| 9. Larsen, N., Thorsen, L., Kpikpi, E.N., Stuer-Lauridsen, 
					B., Cantor, M.D., Nielsen, B., Brockmann, E., Derkx, P.M. 
					and Jespersen, L. (2014) Characterization of Bacillus spp. 
					Strains for use as probiotic additives in pig feed. Appl. 
					Microbiol. Biotechnol., 98(3): 1105-1118. http://dx.doi.org/10.1007/s00253-013-5343-6
 PMid:24201893
 |  
					|  |  
					| 10. Jeong, J.S. and Kim, I.H. (2014) Effect of Bacillus 
					subtilis C-3102 spores as a probiotic feed supplement on 
					growth performance, noxious gas emission, and intestinal 
					microflora in broilers. Poult. Sci., 93(12): 3097-3103. http://dx.doi.org/10.3382/ps.2014-04086
 PMid:25260523
 |  
					|  |  
					| 11. Urgesi, R., Casale, C., Pistelli, R., Rapaccini, G.L. 
					and de Vitis, I. (2014) A randomized double-blind 
					placebo-controlled clinical trial on efficacy and safety of 
					association of simethicone and Bacillus coagulans (Colinox®) 
					in patients with irritable bowel syndrome. Eur. Rev. Med. 
					Pharmacol. Sci., 18(9): 1344-1353. PMid:24867512
 |  
					|  |  
					| 12. Choi, C.H., Kwon, J.G., Kim, S.K., Myung, S.J., Park, 
					K.S., Sohn, C.I., Rhee, P.L., Lee, K.J., Lee, O.Y., Jung, 
					H.K., Jee, S.R., Jeen, Y.T., Choi, M.G., Choi, S.C., Huh, 
					K.C. and Park, H. (2015) Efficacy of combination therapy 
					with probiotics and mosapride in patients with IBS without 
					diarrhea: A randomized, double-blind, placebo-controlled, 
					multicenter, Phase II trial. Neurogastroenterol. Motil., 
					27(5): 705-716. http://dx.doi.org/10.1111/nmo.12544
 PMid:25809913
 |  
					|  |  
					| 13. Rosales-Mendoza, S. and Angulo, C. (2015) Bacillus 
					subtilis comes of age as a vaccine production host and 
					delivery vehicle. Exp. Rev. Vaccines, 14(8): 1135-1148. PMid:26028252
 |  
					|  |  
					| 14. Raut, S.V. and Pingle, Y.A. (2010) Screening and 
					characterization of antimicrobial substances produced by 
					Bacillus species. J. Pure Appl. Microbiol., 4: 321-331. |  
					|  |  
					| 15. Haldar, L., Gandhi, D.N., Majumdar, D. and De, S. (2015) 
					Characterization of indigenous Bacillus coagulans isolated 
					from cattle and buffalo milk. Int. J. Microbiol. Res., 7: 
					686-691. |  
					|  |  
					| 16. Atlas, R.M. (2004) Handbook of Microbiological Media. 
					3rd ed. Taylor & Francis, Boca Raton. http://dx.doi.org/10.1201/9781420039726
 |  
					|  |  
					| 17. Rana, R. and Gandhi, D.N. (2000) Effect of basal medium 
					and pH on the growth of Lactobacillus acidophilus. Indian J. 
					Dairy Sci., 53: 338-342. |  
					|  |  
					| 18. Endres, J.R., Qureshi, I., Farber, T., Hauswirth, J., 
					Hirka, G., Pasics, I. and Schauss, A.G. (2011) One-year 
					chronic oral toxicity with combined reproduction toxicity 
					study of a novel probiotic, Bacillus coagulans, as a food 
					ingredient. Food Chem. Toxicol., 49: 1174-1182. http://dx.doi.org/10.1016/j.fct.2011.02.012
 PMid:21338652
 |  
					|  |  
					| 19. De Clerck, E., Rodriguez-Diaz, M., Forsyth, G., Lebbe, 
					L., Logan, N.A. and De Vos, P. (2004) Polyphasic 
					characterization of Bacillus coagulans strains, illustrating 
					heterogeneity within this species, and emended description 
					of the species. Syst. Appl. Microbiol., 27: 50-60. http://dx.doi.org/10.1078/0723-2020-00250
 PMid:15053321
 |  
					|  |  
					| 20. Clark, P.A., Cotton, L.N. and Martin, J.H. (1993) 
					Selection of Bifidobacteria for use as dietary adjuncts in 
					cultured dairy foods: II. Tolerance to simulated pH of human 
					stomachs. Cult. Dairy Prod. J., 28: 11-14. |  
					|  |  
					| 21. Clark, P.A. and Martin, J.H. (1994) Selection of 
					Bifidobacteria for use as dietary adjuncts in cultured dairy 
					foods: III. Tolerance to simulated bile concentrations of 
					human small intestines. Cult. Dairy Prod. J., 29: 20-21. |  
					|  |  
					| 22. de Oliveira, C.P., da Silva, J.A. and de 
					Siqueira-Júnior, J.P. (2015) Nature of the antimicrobial 
					activity of Lactobacillus casei, Bifidobacterium bifidum and 
					Bifidobacterium animalis against foodborne pathogenic and 
					spoilage microorganisms. Nat. Prod. Res., 29(22): 2133-2136. http://dx.doi.org/10.1080/14786419.2014.989844
 PMid:25533144
 |  
					|  |  
					| 23. Georgieva, R., Yocheva, L., Tserovska, L., Zhelezova, 
					G., Stefanova, N., Atanasova, A., Danguleva, A., Ivanova, 
					G., Karapetkov, N., Rumyan, N. and Karaivanova, E. (2015) 
					Antimicrobial activity and antibiotic susceptibility of 
					Lactobacillus and Bifidobacterium spp. Intended for use as 
					starter and probiotic cultures. Biotechnol. Biotechnol. 
					Equip., 29(1): 84-91. http://dx.doi.org/10.1080/13102818.2014.987450
 PMid:26019620 PMCid:PMC4434095
 |  
					|  |  
					| 24. Mazaya, B., Hamzawy, M.A., Khalil, M.A., Tawkol, W.M. 
					and Sabit, H. (2015) Immunomodulatory and antimicrobial 
					efficacy of Lactobacilli against enteropathogenic infection 
					of Salmonella typhi: In-vitro and in-vivo study. Int. J. 
					Immunopathol. Pharmacol., 28(4): 469-478. http://dx.doi.org/10.1177/0394632015592099
 PMid:26303120
 |  
					|  |  
					| 25. Vidya Laxme, B., Rovetto, A., Grau, R. and Agrawal, R. 
					(2014) Synergistic effects of probiotic Leuconostoc 
					mesenteroides and Bacillus subtilis in malted ragi (Eleucine 
					corocana) food for antagonistic activity against V. Cholerae 
					and other beneficial properties. J. Food Sci. Technol., 
					51(11): 3072-3082. http://dx.doi.org/10.1007/s13197-012-0834-5
 PMid:26396299 PMCid:PMC4571230
 |  
					|  |  
					| 26. Tsukahara, T., Tsuruta, T., Nakanishi, N., Hikita, C., 
					Mochizuki, M. and Nakayama, K. (2013) The preventive effect 
					of Bacillus subtilus strain DB9011 against experimental 
					infection with enterotoxcemic Escherichia coli in weaning 
					piglets. Anim. Sci. J., 84(4): 316-321. http://dx.doi.org/10.1111/asj.12003
 PMid:23590505
 |  
					|  |  
					| 27. Lin, Z., Shi, Y., Deng, B., Mao, X., Yu, D. and Li, W. 
					(2015) Protective immunity against Eimeria tenella infection 
					in chickens following oral immunization with Bacillus 
					subtilis expressing Eimeria tenella 3-1E protein. Parasitol. 
					Res., 114(9): 3229-3236. http://dx.doi.org/10.1007/s00436-015-4539-3
 PMid:25994313
 |  
					|  |  
					| 28. Zhou, D., Zhu, Y.H., Zhang, W., Wang, M.L., Fan, W.Y., 
					Song, D., Yang, G.Y., Jensen, B.B. and Wang, J.F. (2015) 
					Oral administration of a select mixture of Bacillus 
					probiotics generates Tr1 cells in weaned F4ab/acR - Pigs 
					challenged with an F4+ ETEC/VTEC/EPEC strain. Vet. Res., 46: 
					95. http://dx.doi.org/10.1186/s13567-015-0223-y
 PMid:26384321 PMCid:PMC4574530
 |  
					|  |  
					| 29. Haldar, L., Gandhi, D.N. and Mazumdar, D. (2016) 
					Functional and probiotic potential of indigenous Bacillus 
					coagulans and Bacillus pumilus strains isolated from buffalo 
					milk. Int. J. Microbiol. Res., 8(3): 731-736. |  
					|  |  
					| 30. Donnet-Hughes, A., Rochat, F., Serrant, P., Aeschlimann, 
					J.M. and Schiffrin, E.J. (1999) Modulation of nonspecific 
					mechanisms of defense by lactic acid bacteria: Effective 
					dose. J. Dairy Sci., 82: 863-869. http://dx.doi.org/10.3168/jds.s0022-0302(99)75304-x
 |  
					|  |  
					| 31. Hosoi, T., Ametani, A., Kiuchi, K. and Kaminogawa, S. 
					(2000) Improved growth and viability of lactobacilli in the 
					presence of Bacillus subtilis (natto), catalase, or 
					subtilisin. Can. J. Microbiol., 46(10): c892-c897. http://dx.doi.org/10.1139/cjm-46-10-892
 |  
					|  |  
					| 32. Tavares Batista M, Souza, R.D., Paccez, J.D., Luiz, W.B., 
					Ferreira, E.L., Cavalcante, R.C., Ferreira, R.C. and 
					Ferreira, L.C. (2014) Gut adhesive Bacillus subtilis spores 
					as a platform for mucosal delivery of antigens. Infect. 
					Immun., 82(4): 1414-1423. http://dx.doi.org/10.1128/IAI.01255-13
 PMid:24421038 PMCid:PMC3993416
 |  
					|  |  
					| 33. Ghelardi, E., Celandroni, F., Salvetti, S., Gueye, S.A., 
					Lupetti, A. and Senesi, S. (2015) Survival and persistence 
					of Bacillus clausii in the human gastrointestinal tract 
					following oral administration as spore-based probiotic 
					formulation. J. Appl. Microbiol., 119(2): 552-559. http://dx.doi.org/10.1111/jam.12848
 PMid:25973914
 |  
					|  |  
					| 34. Baick, S.C. and Kim, C.H. (2015) Assessment of 
					characteristics and functional properties of Lactobacillus 
					species isolated from kimchi for dairy use. Korean J. Food 
					Sci. Anim. Resour., 35(3): 339-349. http://dx.doi.org/10.5851/kosfa.2015.35.3.339
 PMid:26761848 PMCid:PMC4662357
 |  
					|  |  
					| 35. Hanifi, A., Culpepper, T., Mai, V., Anand, A., Ford, 
					A.L., Ukhanova, M., Christman, M., Tompkins, T.A. and Dahl, 
					W.J. (2015) Evaluation of Bacillus subtilis R0179 on 
					gastrointestinal viability and general wellness: A 
					randomised, double-blind, placebo-controlled trial in 
					healthy adults. Benef. Microbes, 6(1): 19-27. http://dx.doi.org/10.3920/BM2014.0031
 PMid:25062611
 |  
					|  |  
					| 36. Fontana, L., Bermudez-Brito, M., Plaza-Diaz, J., 
					Mu-oz-Quezada, S. and Gil, A. (2013) Sources, isolation, 
					characterisation and evaluation of probiotics. Br. J. Nutr., 
					109 Suppl 2: S35-S50. http://dx.doi.org/10.1017/s0007114512004011
 |  
					|  |  
					| 37. Shobharani, P. and Halami, P.M. (2014) Cellular fatty 
					acid profile and H(+)-ATPase activity to assess acid 
					tolerance of Bacillus sp. For potential probiotic functional 
					attributes. Appl. Microbiol. Biotechnol., 98(21): 9045-9058. http://dx.doi.org/10.1007/s00253-014-5981-3
 PMid:25125040
 |  |