| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 05-07-2016)  
              4. 
				
				
				Effectiveness of a recombinant human 
				follicle stimulating hormone on the ovarian follicles, 
				peripheral progesterone, estradiol-17β, and pregnancy rate of 
				dairy cows - 
				
				Mohamed Ali and Moustafa M. Zeitoun 
              
              Veterinary World, 9(7): 699-704   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.699-704 
                
				  
				
				Mohamed Ali: 
				
				Department of Animal Production and Breeding, Qassim University, 
				College of Agriculture and Veterinary Medicine, Buraidah 6622, 
				Saudi Arabia; mohamed0_9@yahoo.com 
				
				Moustafa M. Zeitoun: 
				
				Department of Animal Production and Breeding, Qassim University, 
				College of Agriculture and Veterinary Medicine, Buraidah 6622, 
				Saudi Arabia; mmzeitoun@yahoo.com   
				
				Received: 12-03-2016, Accepted: 02-06-2016, Published online: 
				05-07-2016   
				
              	
              	Corresponding author: 
              	
				
				Mohamed Ali, e-mail: mohamed0_9@yahoo.com 
 
              Citation: 
				Ali M, Zeitoun MM (2016) Effectiveness of a recombinant human 
				follicle stimulating hormone on the ovarian follicles, 
				peripheral progesterone, estradiol-17β, and pregnancy rate of 
				dairy cows, Veterinary World, 9(7): 699-704. 
 
              
				Abstract 
 
				
				
				Aims: 
				
				This study aimed at elucidating the effects of recombinant human 
				follicle stimulating hormone (r-hFSH) on the ovarian follicular 
				dynamics, progesterone, estradiol-17β profiles, and pregnancy of 
				dairy cows. 
				
				
				Materials and Methods: 
				
				Three groups (G, n=5 cows) of multiparous dairy cows were used. 
				G1 (C) control cows were given controlled internal drug release 
				(CIDR) and prostaglandin F2α; G2 (L) cows were given low dose 
				(525 IU and G3 (H) cows were given high dose (1800 IU) of r-hFSH 
				on twice daily basis at the last 3 days before CIDR removal. All 
				cows were ultrasonically scanned for follicular growth and 
				dynamics, and blood samples were collected every other day for 
				two consecutive estrus cycles for the determination of 
				estradiol-17β and progesterone. 
				
				
				Results: 
				
				Estrus was observed in all C and L but not in H cows. Dominant 
				follicle was bigger in L compared to C and H cows. Dominant 
				follicle in C (16.00±2.5 mm) and L cows (17.40±2.3 mm) 
				disappeared at 72 h after CIDR removal. However, in H cows, no 
				ovulation has occurred during 7 days post-CIDR removal. 
				Progesterone was not different (p>0.10) among groups, whereas 
				estradiol-17β revealed significant (p<0.01) reduction in H 
				(15.96±2.5 pg/ml) cows compared to C (112.26±26.1 pg/ml) and L 
				(97.49±15.9 pg/ml) cows. Pregnancy rate was higher in L cows 
				(60%) compared with C cows (20%). However, H cows were not 
				artificially inseminated due to non-ovulation. Only a cow of C 
				group has calved one calf, however, 2 of the L cows gave birth 
				of twins and a cow gave single calf. 
				
				
				Conclusion: 
				
				Administration of a low dose (525 IU) of r-hFSH resulted in an 
				optimal size of dominant follicle, normal values of progesterone 
				and estradiol-17β, and 40% twinning rate, howeverusing 1800 IU 
				of r-hFSH, have adverse effects on ovarian follicular dynamics 
				and hormonal profiles with non-pregnancy of dairy cows raised 
				under hot climate. 
				
				Keywords: 
				
				dairy cows, estradiol-17β, follicles, progesterone, recombinant 
				human follicle stimulating hormone. 
 
              References 
 
				
					| 1. Mapletoft, R.J. and Bo, G.A. (2013) Innovative strategies 
					for superovulation in cattle. Anim. Reprod., 10: 174-179. |  
					|  |  
					| 2. Mattos, M.C.C., Bastos, M.R., Guardieiro, M.M., Carvalho, 
					J.O., Francoc, M.M., Mourão, G.B., Barros, C.M. and Sartori, 
					R. (2011) Improvement of embryo production by the 
					replacement of the last two doses of porcine 
					follicle-stimulating hormone with equine chorionic 
					gonadotropin in Sindhi donors. Anim. Reprod. Sci., 125: 
					119-123. http://dx.doi.org/10.1016/j.anireprosci.2011.02.028
 PMid:21470801
 |  
					|  |  
					| 3. Gabriel, A., Reuben, B. and Mapletoft, J. (2014) 
					Historical perspectives and recent research on 
					superovulation in cattle. Theriogenology, 81: 38-48. http://dx.doi.org/10.1016/j.theriogenology.2013.09.020
 PMid:24274408
 |  
					|  |  
					| 4. Gervais, A., Hammel, Y.A. and Pelloux, S. (2003) 
					Glycosylation of human gonatrophins: Characterization and 
					batch-to-batch consistency. Glycobiology, 13: 179-189. http://dx.doi.org/10.1093/glycob/cwg020
 PMid:12626416
 |  
					|  |  
					| 5. Kim, D.J., Seok, S.H., Baek, M.W., Lee, H.Y., Juhn, J.H., 
					Lee, S., Yun, M. and Park, J.H. (2010) Highly expressed 
					recombinant human follicle stimulating hormone from Chinese 
					hamster ovary cells grown in serum-free medium and its 
					effect on induction of folliculogenesis and ovulation. 
					Fertil. Steril., 93: 2652-2660. http://dx.doi.org/10.1016/j.fertnstert.2009.05.009
 PMid:19535048
 |  
					|  |  
					| 6. Radwanska, E., Frankenberg, J. and Allen, E. (1978) 
					Plasma progesterone levels in normal and early pregnancy. 
					Fertil. Steril., 30: 398-402. http://dx.doi.org/10.1016/S0015-0282(16)43571-5
 |  
					|  |  
					| 7. Goldstein, D., Zuckerman, H., Harpaz, S., Barkai, J., 
					Gev, A., Gordon, S., Shalev, E. and Schwartz, M. (1982) 
					Correlation between estradiol and progesterone in cycles 
					with luteal phase deficiency. Fertil. Steril., 37: 348-354. http://dx.doi.org/10.1016/S0015-0282(16)46094-2
 |  
					|  |  
					| 8. SPSS. (2007) Statistical Package for the Social Sciences. 
					Version 16 for Windows. SPSS, Chicago, USA. |  
					|  |  
					| 9. Hu, J., Bao, G., Ma, X., Li, W., Lei, A., Yang, C., Gao, 
					Z. and Wang, H. (2010) FSH is superior to ECG for promoting 
					ovarian response in Chinese Bamei gilts. Anim. Reprod. Sci., 
					122: 313-316. http://dx.doi.org/10.1016/j.anireprosci.2010.10.004
 PMid:21074338
 |  
					|  |  
					| 10. Zanetti, E.S., Munerato, M.S., Cursino, M.S. and Duarte, 
					J.M.B. (2014) Comparing two different superovulation 
					protocols on ovarian activity and fecal glucocorticoid 
					levels in the brown brocket deer (Mazama gouazoubira). 
					Reprod. Biol. Endocrinol., 12: 24-32. http://dx.doi.org/10.1186/1477-7827-12-24
 PMid:24646096 PMCid:PMC3994842
 |  
					|  |  
					| 11. Rahman, M.R., Rahman, M.M., Wan Khadijah, W.E. and 
					Abdullah, R.B. (2014) Follicle Stimulating Hormone (FSH) 
					dosage based on body weight enhances ovulatory responses and 
					subsequent embryo production in goats. Asian-Aust. J. Anim. 
					Sci., 27: 1270-1274. |  
					|  |  
					| 12. Son, H.N., Hanh, N.V., Huu, Q.X. and Chau, L.T. (2013) 
					Effect of bovine ovarian status on superovulation. Tạp Chí 
					Sinh Học, 35: 243-247. http://dx.doi.org/10.15625/0866-7160/v35n2.3111
 |  
					|  |  
					| 13. Mapletoft, R.J. (2006) Bovine embryo transfer. In: 
					I.V.I.S, editor. IVIS Reviews in Veterinary Medicine. 
					Ithaca, NY: International Veterinary Information Service, 
					R0104.1106. Available from: http://www.ivis.org. Last 
					accessed on 5/1/2016 |  
					|  |  
					| 14. da Costa, S.L., da Costa, E.P., Pereira, E.C.M., 
					Benjamin, L.A., Verde, I.B.L., Celestino, J.L.H. and de 
					Figueiredo, J.R. (2015) The human follicle stimulating 
					hormone (HFSH) keeps the normal ultrastructure of caprine 
					preantral follicles cultured in vitro. Semina: Ciências 
					Agrárias, Londrina, 36(3), S1: 1965-1978. http://dx.doi.org/10.5433/1679-0359.2015v36n3supl1p1965
 |  
					|  |  
					| 15. Mullen, M.P., Cooke, D.J. and Crow, M.A. (2013) 
					Structural and functional roles of FSH and LH as 
					glycoproteins regulating reproduction in Mammalian species. 
					In: Vizcarra, J., editor. Gonadotropin. Ch. 
					8InTech,International Publisher p155-180. |  
					|  |  
					| 16. Bousfield, G.R. and Dias, J.A. (2011) Synthesis and 
					secretion of gonadotropins including structure-function 
					correlates. Rev. Endocr. Metabol. Disord., 12: 289-302. http://dx.doi.org/10.1007/s11154-011-9191-3
 PMid:21739108 PMCid:PMC3208096
 |  
					|  |  
					| 17. Green, E.D. and Baenziger, J.U. (1988) Asparagine-linked 
					oligosaccharides on lutropin, follitropin, and thyrotropin. 
					I. Structural elucidation of the sulfated and sialylated 
					oligosaccharides on bovine, ovine, and human pituitary 
					glycoprotein hormones. J. Bio. Chem., 263: 25-35. |  
					|  |  
					| 18. Ulloa-Aguirre, A. and Timossi, C. (1998) 
					Structure-function relationship of follicle-stimulating 
					hormone and its receptor. Hum. Reprod. Update, 4: 260-283. http://dx.doi.org/10.1093/humupd/4.3.260
 PMid:9741710
 |  
					|  |  
					| 19. George, J.W., Dille, E.A. and Heckert, L.L. (2011) 
					Current concepts of follicle-stimulating hormone receptor 
					gene regulation. Biol. Reprod., 84: 7-17. http://dx.doi.org/10.1095/biolreprod.110.085043
 PMid:20739665 PMCid:PMC4480823
 |  
					|  |  
					| 20. Okamoto, T. and Nishimoto, I. (1992) Detection of G 
					protein-activator regions in M4 subtype muscarinic 
					cholinergic and tc2-adrenergic receptors based upon 
					characteristics in primary structure. J. Biol. Chem., 267: 
					8342-8346. PMid:1314825
 |  
					|  |  
					| 21. Butler, S.T., Pelton, S.H. and Butler, W.R. (2004) 
					Insulin increases 17β-estradiol production by the dominant 
					follicle of the first postpartum follicle wave in dairy 
					cows. Reproduction, 127: 537-545. http://dx.doi.org/10.1530/rep.1.00079
 PMid:15129009
 |  
					|  |  
					| 22. Kanitz, W., Becker, F., Schneider, F., Kanitz, E., 
					Leiding, C., Nohner, H.P. and Pöhland, R. (2002) 
					Superovulation in cattle: Practical aspects of gonadotropin 
					treatment and insemination. Reprod. Nutr. Dev., 42: 587-599. http://dx.doi.org/10.1051/rnd:2002045
 PMid:12625423
 |  
					|  |  
					| 23. Braileanu, G.T., Albanese, C., Card, C. and Chedrese, 
					P.J. (1998) FSH bioactivity in commercial preparations of 
					gonadotropins. Theriogenology, 49: 1031-1037. http://dx.doi.org/10.1016/S0093-691X(98)00051-X
 |  
					|  |  
					| 24. Stanton, P.G., Pozvek, G., Burgon, P.G., Robertson, D.M. 
					and Hearn, M.T. (1993) Isolation and characterization of 
					human LH isoforms. J. Endocrinol., 138: 529-543. http://dx.doi.org/10.1677/joe.0.1380529
 PMid:8277226
 |  
					|  |  
					| 25. Tamilmani, G., Varshney, V.P., Dubey, P.K., Pathak, M.C. 
					and Sharma, G.T. (2013) Influence of FSH on in vitro growth, 
					steroidogenesis and DNA synthesis of buffalo (Bubalus 
					bubalis) ovarian preantral follicles. Anim. Reprod., 10: 
					32-40. |  
					|  |  
					| 26. Burns, D.S., Jimenez-Krassel, F., Ireland, J.L., Knight, 
					P.G. and Ireland, J.J. (2005) Numbers of antral follicles 
					during follicular waves in cattle: Evidence for high 
					variation among animals, very high repeatability in 
					individuals, and an inverse association with serum 
					follicle-stimulating hormone concentrations. Biol. Reprod., 
					73: 54-62. http://dx.doi.org/10.1095/biolreprod.104.036277
 |  
					|  |  
					| 27. Singh, J., Dominguez, M., Jaiswal, R. and Adams, G.P. 
					(2004) A simple ultrasound test to predict the 
					superstimulatory response in cattle. Theriogenology, 62: 
					227-243. http://dx.doi.org/10.1016/j.theriogenology.2003.09.020
 PMid:15159116
 |  |