Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Review (Published online: 27-06-2016)

20. The detrimental effects of lead on human and animal health - Mohammed Abdulrazzaq Assi, Mohd Noor Mohd Hezmee, Abd Wahid Haron, Mohd Yusof Mohd Sabri and Mohd Ali Rajion

Veterinary World, 9(6): 660-671

 

 

   doi: 10.14202/vetworld.2016.660-671

 

 

Mohammed Abdulrazzaq Assi: Department of Community Health, College of Health and Medical Techniques, Al_Furat Al_Awsat Technical University, Iraq; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; razaq_assi@yahoo.com

Mohd Noor Mohd Hezmee: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; hezmee@upm.edu.my

Abd Wahid Haron: Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; wahidh@upm.edu.my

Mohd Yusof Mohd Sabri: Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; mdsabri@upm.edu.my

Mohd Ali Rajion: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; mohdali@upm.edu.my

 

Received: 31-03-2016, Accepted: 21-05-2016, Published online: 27-06-2016

 

Corresponding author: Mohd Noor Mohd Hezmee, e-mail: hezmee@upm.edu.my


Citation: Assi MA, Hezmee MNM, Haron AW, Sabri MY, Rajion MA (2016) The detrimental effects of lead on human and animal health, Veterinary World, 9(6): 660-671.



Lead, a chemical element in the carbon group with symbol Pb (from Latin: Plumbum, meaning “the liquid silver”) and has an atomic number 82 in the periodic table. It was the first element that was characterized by its kind of toxicity. In animal systems, lead (Pb) has been incriminated in a wide spectrum of toxic effects and it is considered one of the persistent ubiquitous heavy metals. Being exposed to this metal could lead to the change of testicular functions in human beings as well as in the wildlife. The lead poising is a real threat to the public health, especially in the developing countries. Accordingly, great efforts on the part of the occupational and public health have been taken to curb the dangers of this metal. Hematopoietic, renal, reproductive, and central nervous system are among the parts of the human body and systems that are vulnerable toward the dangers following exposure to high level of Pb. In this review, we discussed the massive harmful impact that leads acetate toxicity has on the animals and the worrying fact that this harmful toxicant can be found quite easily in the environment and abundance. Highlighting its (Pb) effects on various organs in the biological systems, its economic, as well as scientific importance, with the view to educate the public/professionals who work in this area. In this study, we focus on the current studies and research related to lead toxicity in animals and also to a certain extent toward human as well.

Keywords: antioxidant, free radical, lead poisoning, oxidative stress.



1. Patra, R.C., Rautray, A.K. and Swarup, D. (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. J. Vet. Intern. Med., 2011: 457327.
http://dx.doi.org/10.4061/2011/457327
 
2. Jadhav, S.H., Sarkar, S.N., Patil, R.D. and Tripathi, H.C. (2007) Effects of subchronic exposure via drinking water to a mixture of eight water contaminating metals: A biochemical and histopathological study in male rats. Arch. Environ. Con. Toxicol., 53(4): 667-677.
http://dx.doi.org/10.1007/s00244-007-0031-0
PMid:17882470
 
3. Ahmed, W.M., Abdel-Hameed, A.R. and Moghazy, F.M.E. (2008) Some reproductive and health aspects of female buffaloes in relation to blood lead concentration. Int. J. Dairy Sci., 3(2): 63-70.
http://dx.doi.org/10.3923/ijds.2008.63.70
 
4. McDowell, L.R. (2003) Minerals in Animal and Human Nutrition. 2nd ed. Elsevier Science, Amsterdam. p361-364.
 
5. Burki, T.K. (2012) Nigeria's lead poisoning crisis could leave a long legacy. Lancet, 379(9818): 792.
http://dx.doi.org/10.1016/s0140-6736(12)60332-8
 
6. Ercal, N., Gurer-Orhan, H. and Aykin-Burns, N. (2001) Toxic metals and oxidative stress Part. I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem., 1(6): 529-539.
http://dx.doi.org/10.2174/1568026013394831
PMid:11895129
 
7. Ahamed, M. and Siddiqui, M.K.J. (2007) Environmental lead toxicity and nutritional factors. Clin. Nutr., 26(4): 400-408.
http://dx.doi.org/10.1016/j.clnu.2007.03.010
PMid:17499891
 
8. Ahamed, M. and Siddiqui, M.K.J. (2007) Low level lead exposure and oxidative stress: Current opinions. Clin. Chim. Acta, 383(1): 57-64.
http://dx.doi.org/10.1016/j.cca.2007.04.024
PMid:17573057
 
9. Spivey, A. (2007) The weight of lead: Effects add up in adults. Environ. Health Perspect. J., 115(1): A30-A36.
http://dx.doi.org/10.1289/ehp.115-a30
 
10. Flora, G., Gupta, D. and Tiwari, A. (2012) Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 5(2): 47-58.
http://dx.doi.org/10.2478/v10102-012-0009-2
 
11. Canfield, R.L., Henderson, C.R.Jr., Cory-Slechta, D.A., Cox, C., Jusko, T.A. and Lanphear, B.P. (2003) Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N. Engl. J. Med., 348(16): 1517-1526.
http://dx.doi.org/10.1056/NEJMoa022848
PMid:12700371 PMCid:PMC4046839
 
12. Flora, S.J. (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med., 51(2): 257-281.
http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.008
PMid:21554949
 
13. Katsuyama, M., Matsuno, K. and Yabe-Nishimura, C. (2012) Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J. Clin. Biochem. Nutr., 50(1): 9-22.
http://dx.doi.org/10.3164/jcbn.11-06SR
PMid:22247596 PMCid:PMC3246189
 
14. Ishikawa, E.T., Gonzalez-Nieto, D., Ghiaur, G., Dunn, S.K., Ficker, A.M., Murali, B. and Cancelas, J.A. (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl. Acad. Sci., 109(23): 9071-9076.
http://dx.doi.org/10.1073/pnas.1120358109
PMid:22611193 PMCid:PMC3384185
 
15. Pizzino, G., Bitto, A., Interdonato, M., Galfo, F., Irrera, N., Mecchio, A. and Squadrito, F. (2014) Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the milazzo-valle del Mela area (Sicily, Italy) Redox. Biol. J., 2: 686-693.
http://dx.doi.org/10.1016/j.redox.2014.05.003
PMid:24936443 PMCid:PMC4052524
 
16. Wang, J., Yang, Z., Lin, L., Zhao, Z., Liu, Z. and Liu, X. (2012) Protective effect of naringenin against lead-induced oxidative stress in rats. Biol. Trace Elem. Res., 146(3): 354-359.
http://dx.doi.org/10.1007/s12011-011-9268-6
PMid:22109809
 
17. ATSDR, (Agency for Toxic Substances and Disease Registry). (2007) Toxicological Profile for Lead. (Draft for Public Comment) Agency for Toxic Substances and Disease Registry, Public Health Service, United State Department of Health and Human Services, Atlanta, GA.
 
18. Benoff, S., Jacob, A. and Hurley, I.R. (2000) Male infertility and environmental exposure to lead and cadmium. Hum. Reprod. Update, 6(2): 107-121.
http://dx.doi.org/10.1093/humupd/6.2.107
 
19. Batra, N., Nehru, B. and Bansal, M.P. (2001) Influence of lead and zinc on rat male reproduction at 'biochemical and histopathological levels'. J. Appl. Toxicol., 21(6): 507-512.
http://dx.doi.org/10.1002/jat.796
PMid:11746199
 
20. Vaziri, N.D. and Khan, M. (2007) Interplay of reactive oxygen species and nitric oxide in the pathogenesis of experimental lead‐induced hypertension. Clin. Exp. Pharmacol. Physiol., 34(9): 920-925.
http://dx.doi.org/10.1111/j.1440-1681.2007.04644.x
PMid:17645641
 
21. Patrick, L. (2006) Lead toxicity Part. II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern. Med. Rev., 11(2): 114.
PMid:16813461
 
22. Kiziler, A.R., Aydemir, B., Onaran, I., Alici, B., Ozkara, H., Gulyasar, T. and Akyolcu, M.C. (2007) High levels of cadmium and lead in seminal fluid and blood of smoking men are associated with high oxidative stress and damage in infertile subjects. Biol. Trace Elem. Res., 120(1-3): 82-91.
http://dx.doi.org/10.1007/s12011-007-8020-8
PMid:17916958
 
23. Kasperczyk, S., Birkner, E., Kasperczyk, A. and Zalejska-Fiolka, J. (2004) Activity of superoxide dismutase and catalase in people protractedly exposed to lead compounds. Ann. Agric. Environ. Med., 11(2): 291-296.
PMid:15627339
 
24. Hsu, P.C., Hsu, C.C. and Guo, Y.L. (1999) Hydrogen peroxide induces premature acrosome reaction in rat sperm and reduces their penetration of the Zona pellucida. Toxicology, 139(1): 93-101.
http://dx.doi.org/10.1016/S0300-483X(99)00107-9
 
25. Hsu, P.C. and Guo, Y.L. (2002) Antioxidant nutrients and lead toxicity. Toxicology, 180(1): 33-44.
http://dx.doi.org/10.1016/S0300-483X(02)00380-3
 
26. Marchlewicz, M., Wiszniewska, B., Gonet, B., Baranowska-Bosiacka, I., Safranow, K., Kolasa, A. and Rać, M.E. (2007) Increased lipid peroxidation and ascorbic acid utilization in testis and epididymis of rats chronically exposed to lead. Biometals, 20(1): 13-19.
http://dx.doi.org/10.1007/s10534-006-9009-z
PMid:16699871
 
27. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. and Kalayci, O. (2012) Oxidative stress and antioxidant defense. Review article. World Allergy Organ. J., 5: 9-19.
http://dx.doi.org/10.1097/WOX.0b013e3182439613
PMid:23268465 PMCid:PMC3488923
 
28. Kumar, A., Prasad, M.N.V., Achary, V.M.M. and Panda, B.B. (2013) Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ. Sci. Pollut. Res., 20(7): 4551-4561.
http://dx.doi.org/10.1007/s11356-012-1354-6
PMid:23263755
 
29. Khaki, A., Bayatmakoo, R., Nouri, M. and Khaki, A.A. (2013) Remedial effect of Cinnamon zeylanicum on serum anti-oxidants levels in male diabetic Rat. Life Sci. J., 10(4s): 103-107.
 
30. Elgawish, R.A.R. and Abdelrazek, H.M. (2014) Effects of lead acetate on testicular function and caspase-3 expression with respect to the protective effect of cinnamon in albino rats. Toxicol. Rep., 1: 795-801.
http://dx.doi.org/10.1016/j.toxrep.2014.10.010
 
31. Singh, M.K., Dwivedi, S., Yadav, S.S., Sharma, P. and Khattri, S. (2014) Arsenic-induced hepatic toxicity and its attenuation by fruit extract of Emblica officinalis (amla) in mice. Indian J. Clin. Biochem., 29(1): 29-37.
http://dx.doi.org/10.1007/s12291-013-0353-9
PMid:24478546 PMCid:PMC3903921
 
32. Bailey, C. and Kitchen, I. (1985) Ontogenesis of proenkephalin products in rat striatum and the inhibitory effects of low-level lead exposure. Dev. Brain Res. J., 22(1): 75-79.
http://dx.doi.org/10.1016/0165-3806(85)90070-7
 
33. Markovac, J. and Goldstein, G.W. (1988) Picomolar concentrations of lead stimulate brain protein kinase C. Nat. J., 334(6177): 71-73.
http://dx.doi.org/10.1038/334071a0
PMid:3386747
 
34. Bressler, J.P. and Goldstein, G.W. (1991) Mechanisms of lead neurotoxicity. Biochem. Pharmacol. J. 41(4): 479-484.
http://dx.doi.org/10.1016/0006-2952(91)90617-E
 
35. Rice, D.C. (1992) Behavioral impairment produced by developmental lead exposure: Evidence from primate reseach. Human Lead Exposure. CRC Press, Boca Raton, FL. p138-152.
 
36. Chowdhury, A.R., Dewan, A. and Gandhi, D.N. (1983) Toxic effect of lead on the testes of rat. Biomed. Biochim. Acta J., 43(1): 95-100.
 
37. Davidovics, Z. and DiCicco‐Bloom, E. (2005) Moderate lead exposure elicits neurotrophic effects in cerebral cortical precursor cells in culture. J. Neurosci. Res., 80(6): 817-825.
http://dx.doi.org/10.1002/jnr.20539
PMid:15884012
 
38. Vargas, H., Castillo, C., Posadas, F. and Escalante, B. (2003) Acute lead exposure induces renal haeme oxygenase-1 and decreases urinary Na excretion. Hum. Exp. Toxicol. J., 22(5): 237-244.
http://dx.doi.org/10.1191/0960327103ht360oa
 
39. Qian, Y., Harris, E.D., Zheng, Y. and Tiffany-Castiglioni, E. (2000) Lead targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicol. Appl. Pharmacol. J., 163(3): 260-266.
http://dx.doi.org/10.1006/taap.1999.8878
PMid:10702365
 
40. Jomova, K. and Valko, M. (2011) Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2): 65-87.
http://dx.doi.org/10.1016/j.tox.2011.03.001
PMid:21414382
 
41. Kasperczyk, A., Machnik, G., Dobrakowski, M., Sypniewski, D., Birkner, E. and Kasperczyk, S. (2012) Gene expression and activity of antioxidant enzymes in the blood cells of workers who were occupationally exposed to lead. Toxicology, 301(1): 79-84.
http://dx.doi.org/10.1016/j.tox.2012.07.002
PMid:22796238
 
42. Nair, A.R., DeGheselle, O., Smeets, K., Van Kerkhove, E. and Cuypers, A. (2013) Cadmium-induced pathologies: Where is the oxidative balance lost (or not)? Int. J. Mol. Sci., 14(3): 6116-6143.
http://dx.doi.org/10.3390/ijms14036116
PMid:23507750 PMCid:PMC3634456
 
43. El-Tantawy, W.H. (2015) Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats. J. Tradit. Compl. Med., 1-5 (Article in Press)
http://dx.doi.org/10.1016/j.jtcme.2015.02.001
 
44. Vaziri, N.D. and Sica, D.A. (2004) Lead-induced hypertension: Role of oxidative stress. Curr. Hyper. Rep. J., 6: 314-320.
http://dx.doi.org/10.1007/s11906-004-0027-3
 
45. Hwang, K.Y., Schwartz, B.S., Lee, B.K., Strickland, P.T., Todd, A.C. and Bressler, J.P. (2001) Associations of lead exposure and dose measures with erythrocyte protein kinase C activity in 212 current Korean lead workers. J. Toxicol. Sci., 62(2): 280-288.
http://dx.doi.org/10.1093/toxsci/62.2.280
 
46. Bagchi, D. and Preuss, H.G. (2005) Effects of acute and chronic oval exposure of lead on blood pressure and bone mineral density in rats. J. Inorg. Biochem., 99(5): 1155-1164.
http://dx.doi.org/10.1016/j.jinorgbio.2005.02.011
PMid:15833339
 
47. Navas-Acien, A., Guallar, E., Silbergeld, E.K. and Rothenberg, S.J. (2007) Lead exposure and cardiovascular disease - A systematic review. Environ. Health Perspect. J., 115(3): 472-482.
http://dx.doi.org/10.1289/ehp.9785
PMid:17431501 PMCid:PMC1849948
 
48. ATSDR, (Agency for Toxic Substances and Disease Registry). (2005) Toxicological profile for lead. (Draft for Public Comment) Agency for Toxic Substances and Disease Registry, Public Health Service, United State Department of Health and Human Services, Atlanta, GA. p43-59.
 
49. Kilikdar, D., Mukherjee, D., Dutta, M., Ghosh, A.K., Rudra, S., Chandra, A.M. and Bandyopadhyay, D. (2013) Protective effect of aqueous garlic extract against lead-induced cardiac injury in rats. J. Cell Tissue Res., 13(3): 3817.
 
50. Grant, L.D. (2008) Lead and compounds. Environmental Toxicants: Human Exposures and Their Health Effects. 3rd ed. Wiley, Hoboken, NJ, USA. p757-809.
 
51. Baranowska-Bosiacka, I., Gutowska, I., Rybicka, M., Nowacki, P. and Chlubek, D. (2012) Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders. Neurol. Neurochir. Pol. J., 46(6): 569-578.
http://dx.doi.org/10.5114/ninp.2012.31607
 
52. Carmignani, M., Volpe, A.R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A. and Felaco, M. (2000) Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci. J., 68(4): 401-415.
http://dx.doi.org/10.1016/S0024-3205(00)00954-1
 
53. Salim, M. (2015) Evaluation of performance of date palm pollen on urea and creatinine levels in adult female rats exposed to lead acetate intoxication. Int. J. Biomed. Adv. Res., 6(1): 20-24.
http://dx.doi.org/10.7439/ijbar.v6i1.1565
 
54. Sharma, S. and Singh, B. (2014) Effects of acute and chronic lead exposure on kidney lipid peroxidation and antioxidant enzyme activities in BALB-C mice (Mus musculus). Int. J. Sci. Res., 3: 1564-1566.
 
55. Moneim, A.E.A., Dkhil, M.A. and Al-Quraishy, S. (2011) The protective effect of flaxseed oil on lead acetate-induced renal toxicity in rats. J. Hazard. Mater., 194: 250-255.
http://dx.doi.org/10.1016/j.jhazmat.2011.07.097
PMid:21872391
 
56. Lakshmi, B.V.S., Sudhakar, M. and Aparna, M. (2013) Protective potential of Black grapes against lead induced oxidative stress in rats. Environ. Toxicol. Pharmacol., 35(3): 361-368.
http://dx.doi.org/10.1016/j.etap.2013.01.008
PMid:23467113
 
57. Sharma, V., Sharma, A. and Kansal, L. (2010) The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food Chem. Toxicol., 48(3): 928-936.
http://dx.doi.org/10.1016/j.fct.2010.01.002
PMid:20060875
 
58. Aziz, F.M., Maulood, I.M. and Chawsheen, M.A.H. (2012) Effects of melatonin, vitamin C and E alone or in combination on lead-induced injury in liver and kidney organs of rats. IOSR J. Pharm., 2: 13-18.
http://dx.doi.org/10.9790/3013-25201318
 
59. Sujatha, K., Srilatha, C.H., Anjaneyulu, Y. and Amaravathi, P. (2011) Lead acetate induced nephrotoxicity in wistar albino rats, pathological, immunohistochemical and ultra-structural studies. Int. J. Pharm. Biol. Sci., 2(2): B459-B469.
 
60. Finley, J. (2014) Compositions and methods for the pre-vention and treatment of diseases or conditions associated with oxidative stress, inflammation, and metabolic dysregulation. U. S. Patent No.8, 652, 518. U. S. Patent and Trademark Office, Washington, DC.
 
61. Nisar, M.F., Nasir, I., Shaheen, S., Khalid, A. and Tazeen, N. (2014) Chronic lead acetate nephrotoxicity: A histological study on albino rats. Annals, 17(3): 239.
 
62. Velaga, M.K., Daughtry, L.K., Jones, A.C., Yallapragada, P.R., Rajanna, S. and Rajanna, B. (2014) Attenuation of lead-induced oxidative stress in rat brain, liver, kidney and blood of male wistar rats by Moringa oleifera seed powder. J. Environ. Pathol. Toxicol. Oncol., 33(4): 323-337.
http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014011656
 
63. Ji, J.S., Schwartz, J., Sparrow, D., Hu, H. and Weisskopf, M.G. (2014) Occupational determinants of cumulative lead exposure: Analysis of bone lead among men in the VA normative aging study. J. Occup. Environ. Med. Am. Coll. Occup. Environ. Med., 56(4): 435.
http://dx.doi.org/10.1097/jom.0000000000000127
 
64. Weiner, I.D., Mitch, W.E. and Sands, J.M. (2015) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol., 10(8): 1444-1458.
http://dx.doi.org/10.2215/CJN.10311013
PMid:25078422
 
65. Oyagbemi, A.A., Omobowale, T.O., Akinrinde, A.S., Saba, A.B., Ogunpolu, B.S. and Daramola, O. (2015) Lack of reversal of oxidative damage in renal tissues of lead acetate‐treated rats. Environ. Toxicol., 30(11): 1235-1243.
http://dx.doi.org/10.1002/tox.21994
PMid:24706517
 
66. Conterato, G.M., Bulcão, R.P., Sobieski, R., Moro, A.M., Charão, M.F., Freitas, F.A. and Batista, B.L. (2013) Blood thioredoxin reductase activity, oxidative stress and hematological parameters in painters and battery workers: Relationship with lead and cadmium levels in blood. J. Appl. Toxicol., 33(2): 142-150.
http://dx.doi.org/10.1002/jat.1731
PMid:21910133
 
67. Salińska, A., Włostowski, T. and Zambrzycka, E. (2012) Effect of dietary cadmium and/or lead on histopathological changes in the kidneys and liver of bank voles Myodes glareolus kept in different group densities. Ecotoxicology, 21(8): 2235-2243.
http://dx.doi.org/10.1007/s10646-012-0979-z
PMid:22855305 PMCid:PMC3475967
 
68. Dai, S., Yin, Z., Yuan, G., Lu, H., Jia, R., Xu, J. and He, C. (2013) Quantification of metallothionein on the liver and kidney of rats by subchronic lead and cadmium in combination. Environ. Toxicol. Pharm., 36(3): 1207-1216.
http://dx.doi.org/10.1016/j.etap.2013.10.003
PMid:24184865
 
69. Yuan, G., Dai, S., Yin, Z., Lu, H., Jia, R., Xu, J. and Chen, Z. (2014) Sub-chronic lead and cadmium co-induce apoptosis protein expression in liver and kidney of rats. Int. J. Clin. Exp. Pathol., 7(6): 2905-2914.
PMid:25031709 PMCid:PMC4097244
 
70. Omobowale, T.O., Oyagbemi, A.A., Akinrinde, A.S., Saba, A.B., Daramola, O.T., Ogunpolu, B.S. and Olopade, J.O. (2014) Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in wistar rats. Environ. Toxicol. Pharm., 37(3): 1202-1211.
http://dx.doi.org/10.1016/j.etap.2014.03.002
PMid:24814264
 
71. Abdou, H.M. and Hassan, M.A. (2014) Protective role of omega-3 polyunsaturated fatty acid against lead acetate-induced toxicity in liver and kidney of female rats. BioMed. Res. Int., 2014: 435857-435857.
http://dx.doi.org/10.1155/2014/435857
PMid:25045676 PMCid:PMC4086517
 
72. Mohammadi, M., Ghaznavi, R., Keyhanmanesh, R., Sadeghipour, H.R., Naderi, R. and Mohammadi, H. (2014) Caloric restriction prevents lead-induced oxidative stress and inflammation in rat liver. Sci. World J., 24: 821524, 5.
 
73. Liu, C.M., Ma, J.Q. and Sun, Y.Z. (2012) Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Exp. Toxicol. Pathol., 64(6): 575-582.
http://dx.doi.org/10.1016/j.etp.2010.11.016
PMid:21146379
 
74. Mujaibel, L.M. and Kilarkaje, N. (2015) Mitogen‐activated protein kinase signaling and its association with oxidative stress and apoptosis in lead‐exposed hepatocytes. Environ. Toxicol., 30(5): 513-529.
http://dx.doi.org/10.1002/tox.21928
PMid:24293362
 
75. Kilikdar, D., Mukherjee, D., Mitra, E., Ghosh, A.K., Basu, A., Chandra, A.M. and Bandyoapdhyay, D. (2011) Protective effect of aqueous garlic extract against lead-induced hepatic injury in rats. Indian J. Exp. Biol., 49(7): 498.
PMid:21800501
 
76. Allouche, L., Hamadouche, M., Touabti, A. and Khennouf, S. (2011) Effect of long-term exposure to low or moderate lead concentrations on growth, lipid profile and liver function in albino rats. Adv. Biol. Res., 5(6): 339-347.
 
77. Bharali, M.R. (2013) Effect of acute lead acetate exposure on liver of mice. J. Glob. Biosci., 2: 121-125.
 
78. Brent, J.A. (2006) Review of medical toxicology. J. Clin. Toxicol., 44: 355-355.
http://dx.doi.org/10.1080/15563650600584733
 
79. Flora, S.J.S., Flora, G. and Saxena, G. (2006) Environmental occurrence, health effects and management of lead poisoning. Lead Chemistry, Analytical Aspects, Environmental Impacts and Health Effects. Elsevier Publication, Netherlands. p158-228.
http://dx.doi.org/10.1016/b978-044452945-9/50004-x
 
80. Needleman, H. (2004) Lead poisoning. Annu. Rev. Med., 55: 209-222.
http://dx.doi.org/10.1146/annurev.med.55.091902.103653
PMid:14746518
 
81. Cleveland, L.M., Minter, M.L., Cobb, K.A., Scott, A.A. and German, V.F. (2008) Lead hazards for pregnant women and children. Part 1: Immigrants and the poor shoulder most of the burden of lead exposure in this country. Part. 1 of a two‐part article details how exposure happens, whom it affects, and the harm it can do. AJN Am. J. Nurs., 108(10): 40-49.
http://dx.doi.org/10.1097/01.naj.0000339156.09233.de
 
82. Sanders, T., Liu, Y., Buchner, V. and Tchounwou, P.B. (2009) Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Health, 24(1): 15-46.
http://dx.doi.org/10.1515/reveh.2009.24.1.15
 
83. Mustafa, H.N. and Hussein, A.M. (2015) Does allicin combined with vitamin B-complex have superior potentials than α-tocopherol alone in ameliorating lead acetate-induced Purkinje cell alterations in rats? An immunohistochemical and ultrastructural study. Folia Morphol., 75(1): 1-17.
 
84. Feeser, V.R. and Loria, R.M. (2011) Modulation of traumatic brain injury using progesterone and the role of glial cells on its neuroprotective actions. J. Neuroimmunol., 237(1): 4-12.
http://dx.doi.org/10.1016/j.jneuroim.2011.06.007
PMid:21777982
 
85. Mtui, E., Gruener, G. and FitzGerald, M.J.T. (2011) Clinical Neuroanatomy and Neuroscience. Elsevier Health Sciences, Philadelphia, PA.
PMid:21826835
 
86. Vij, A.G. and Dhundasi, S.A. (2009) Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and Vitamin C. Al Ameen J. Med. Sci., 2(2): 27-36.
 
87. Piomelli, S. (2002) Childhood lead poisoning. Pediatr. Clin. North. Am. J., 49(6): 1285-1304.
http://dx.doi.org/10.1016/S0031-3955(02)00097-4
 
88. Ahamed, M., Verma, S., Kumar, A. and Siddiqui, M.K.J. (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci. Total Environ., 346(1): 48-55.
http://dx.doi.org/10.1016/j.scitotenv.2004.12.019
PMid:15993681
 
89. Jangid, A.P., John, P.J., Yadav, D., Mishra, S. and Sharma, P. (2012) Impact of chronic lead exposure on selected biological markers. Indian J. Clin. Biochem., 27(1): 83-89.
http://dx.doi.org/10.1007/s12291-011-0163-x
PMid:23277717 PMCid:PMC3286579
 
90. Corradi, M., Goldoni, M. and Sabbadini, M. (2011) Acute lead poisoning: A singular case of hemolytic anemia and lead colic. Med. Lav., 102(3): 243-249.
PMid:21797041
 
91. Ibrahim, N.M., Eweis, E.A., El-Beltagi, H.S. and Abdel-Mobdy, Y.E. (2012) Effect of lead acetate toxicity on experimental male albino rat. Asian Pac. J. Trop. Biomed., 2(1): 41-46.
http://dx.doi.org/10.1016/S2221-1691(11)60187-1
 
92. Jassim, H.M. and Hassan, A.A. (2011) Changes in some blood parameters in lactating female rats and their pups exposed to lead: Effects of vitamins C and E. I.J.V.S., 25: 1-7.
 
93. Renner, R. (2010) Exposure on tap: Drinking water as an overlooked source of lead. Environ. Health Perspect., 118(2): A68-A72.
http://dx.doi.org/10.1289/ehp.118-a68
 
94. Al Naimi, R.A., Abdulhadi, D., Zahroon, O.S. and Al-Taae, E.H. (2011) Toxicopathological Study of lead acetate poisoning in growing rats and the protactive effect of crystien or calicium. Al-Anbar J. Vet. Sci., 4: 26-39.
 
95. Telisman, S., Cvitkovic, P., Jurasovic, J., Pizent, A., Gavella, M. and Rocic, B. (2000) Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ. Health Perspect., 108(1): 45.
http://dx.doi.org/10.1289/ehp.0010845
PMid:10620523 PMCid:PMC1637869
 
96. Saleh, H.A., El‐Aziz, G.A., El‐Fark, M.M. and El‐Gohary, M. (2009) Effect of maternal lead exposure on craniofacial ossification in rat fetuses and the role of antioxidant therapy. Anat. Histol. Embryol., 38(5): 392-399.
http://dx.doi.org/10.1111/j.1439-0264.2009.00960.x
PMid:19769572
 
97. Foster, W.G., McMahon, A., YoungLai, E.V., Hughes, E.G. and Rice, D.C. (1993) Reproductive endocrine effects of chronic lead exposure in the male cynomolgus monkey. J. Reprod. Toxicol., 7(3): 203-209.
http://dx.doi.org/10.1016/0890-6238(93)90225-V
 
98. El-Mehi, A.E. and Amin, S.A. (2012) Effect of lead acetate on the thyroid gland of adult male albino rats and the possible protective role of zinc supplementation: A biochemical, histological and morphometric study. J. Am. Sci., 8(7): 61-71.
 
99. Anjum, M.R. and Reddy, P.S. (2012) Supplementation of testosterone restores the suppressed fertility in male rats exposed to lead during perinatal period. IOSR J. Pharm., 2(6): 49-53.
http://dx.doi.org/10.9790/3013-26204953
 
100. Anjum, M.R., Sainath, S.B., Suneetha, Y. and Reddy, P.S. (2011) Lead acetate induced reproductive and paternal mediated developmental toxicity in rats. Ecotoxicol. Environ. Saf., 74(4): 793-799.
http://dx.doi.org/10.1016/j.ecoenv.2010.10.044
PMid:21112632
 
101. Al-Sa'ady, M.S.M., Kamil, H.Z. and Jasim, S.H. (2011) Effect of lead acetate in some physiological genetic parameters in white male rat rattus rattus. Fac. Educ. Karbala Univ., 3(9): 295-301.
 
102. Hammed, M.S., Arrak, J.K., Al-Khafaji, N.J. and Hassan, A.A. (2012) Effect of date palm pollen suspension on ovarian function and fertility in adult female rats exposed to lead acetate. Diyala J. Med., 3(1): 90-96.
 
103. Flora, S.J.S. (2002) Nutritional components modify metal absorption, toxic response and chelation therapy. J. Nutr. Environ. Med., 12(1): 53-67.
http://dx.doi.org/10.1080/13590840220123361
 
104. Mates, J.M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153(1): 83-104.
http://dx.doi.org/10.1016/S0300-483X(00)00306-1
 
105. Hultberg, B., Andersson, A. and Isaksson, A. (2001) Interaction of metals and thiols in cell damage and glutathione distribution: Potentiation of mercury toxicity by dithiothreitol. Toxicology, 156(2): 93-100.
http://dx.doi.org/10.1016/S0300-483X(00)00331-0
 
106. Flora, S.J., Saxena, G. and Mehta, A. (2007) Reversal of lead-induced neuronal apoptosis by chelation treatment in rats: Role of reactive oxygen species and intracellular Ca2+. J. Pharmacol. Exp. Ther., 322(1): 108-116.
http://dx.doi.org/10.1124/jpet.107.121996
PMid:17431133
 
107. Lidsky, T.I. and Schneider, J.S. (2003) Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain, 126(1): 5-19.
http://dx.doi.org/10.1093/brain/awg014
 
108. Garza, A., Vega, R. and Soto, E. (2006) Cellular mechanisms of lead neurotoxicity. Med. Sci. Monit., 12(3): RA57-RA65.
PMid:16501435
 
109. Bressler, J., Kim, K.A., Chakraborti, T. and Goldstein, G. (1999) Molecular mechanisms of lead neurotoxicity. Neurochem. Res., 24(4): 595-600.
http://dx.doi.org/10.1023/A:1022596115897
 
110. Payne, J. and Livesey, C. (2010) Lead poisoning in cattle and sheep. In Pract., 32(2): 64-69.
http://dx.doi.org/10.1136/inp.b5672
 
111. Kaneko, J.J., Harvey, J.W. and Bruss, M.L., editors. (2008) Clinical Biochemistry of Domestic Animals. Academic Press, San Diego, CA.