| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 29-05-2016)  
              18. 
				
				
				The structural and functional recovery of 
				pancreatic β-cells in type 1 diabetes mellitus induced 
				mesenchymal stem cell-conditioned medium - 
				
				Widagdo Sri Nugroho, Dwi Liliek Kusindarta, Heru Susetya, Ida 
				Fitriana, Guntari Titik Mulyani, Yuda Heru Fibrianto, Aris 
				Haryanto and Teguh Budipitojo 
              
              Veterinary World, 9(5): 535-539   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.535-539 
                
				  
				
				Widagdo Sri Nugroho: 
				
				Department of Veterinary Public Health, Faculty of Veterinary 
				Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 
				weesnugroho@ugm.ac.id 
				
				Dwi Liliek Kusindarta: 
				
				Department of Anatomy, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; indarta@ugm.ac.id 
				
				Heru Susetya: 
				
				Department of Veterinary Public Health, Faculty of Veterinary 
				Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 
				heruanggikiki@yahoo.com 
				
				Ida Fitriana: 
				
				Department of Pharmacology, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; idafitriana.apt@gmail.com 
				
				Guntari Titik Mulyani: 
				
				Department of Internal Medicine, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; guntari@ugm.ac.id 
				
				Yuda Heru Fibrianto: 
				
				Department of Physiology, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; fibrianto1802@gmail.com 
				
				Aris Haryanto: 
				
				Department of Biochemistry, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; arisharyanto@yahoo.com 
				
				Teguh Budipitojo: 
				
				Department of Anatomy, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; budipitojo@ugm.ac.id   
				
				Received: 02-11-2015, Accepted: 22-04-2016, Published online: 
				29-05-2016 
				  
				
              	
              	Corresponding author:Teguh Budipitojo, e-mail: budipitojo@ugm.ac.id 
 
              Citation: 
				
				Nugroho WS, Kusindarta DL, Susetya H, Fitriana I, Mulyani GT, 
				Fibrianto YH, Haryanto A, Budipitojo T (2016) The structural and 
				functional recovery of pancreatic β-cells in type 1 diabetes 
				mellitus induced mesenchymal stem cell-conditioned medium,
				
				
				Veterinary World, 9(5): 
				535-539. 
 
              
				Abstract 
 
				
				
				Aim: 
				
				Various studies have shown that secreted factors alone in 
				culture medium without stem cell are capable of repairing 
				tissues by itself in various conditions involving damaged 
				tissue/organ. Therefore, this study was aimed to investigate the 
				role of human umbilical cord mesenchymal stem cell-derived 
				conditioned medium (CM) on the recovery of pancreatic β-cells in 
				Wistar rats (Rattus 
				norvegicus) 
				with type 1 diabetes mellitus. 
				
				
				Materials and Methods: 
				
				The 0.05 ml CM induction was applied to the diabetic group of 
				rats in weeks 1, 2, 3, and 4. 1 week after each CM induction, 
				insulin concentration was analyzed using ELISA. The pancreas was 
				divided into 3 regions, processed by paraffin method, stained 
				with hematoxylin-eosin, and immunohistochemical method for 
				insulin. 
				
				
				Results: 
				
				This study indicated the decrease in the total number of islets 
				and insulin concentration after the injection of single dose of 
				alloxan. The exocrine acini were also damaged. Microscopic 
				observation detected the presence of small islets in the 
				diabetic group 1 week after the first 0.05 ml CM induction. The 
				number and size of the islets increased in line with the CM 
				doses and time of inductions. Immunohistochemically, the 
				presence of low intensity of insulin-positive cells could be 
				recognized at the splenic and duodenal regions of the pancreas, 
				but not gastric region, 1 week after the first and second 0.05 
				ml CM induction. The intensity of staining and the number of 
				insulin-positive cells increased dramatically in 1 week after 
				the third and fourth 0.05 ml of CM induction in all regions of 
				the pancreas. The data of insulin blood concentration showed 
				clear differences between the second and the fourth induction of 
				0.05 ml CM induction. 
				
				
				Conclusions: 
				
				This study showed very strong evidence on the role of human 
				umbilical cord mesenchymal stem cell-derived CM in recovering 
				the pancreatic β-cells damage in Wistar rats (R. 
				norvegicus) 
				with type 1 diabetes mellitus, structurally and functionally. 
				
				Keywords: 
				
				conditioned-medium, pancreatic β-cells, structural and 
				functional recovery, type 1 diabetes mellitus. 
 
              References 
 
				
					| 1. Yang, D., Wang, W. and Li, L. (2013) The relative 
					contribution of paracine effect versus direct 
					differentiation on adipose-derived stem cell transplantation 
					mediated cardiac repair. PLoS One, 8(3): Article ID:e59020. http://dx.doi.org/10.1371/journal.pone.0059020
 |  
					|  |  
					| 2. Timmers, L., Lim, S.K., Hoefer, I.E., Arslan, F., Lai, 
					R.C., van Oorschot, A.A., Goumans, M.J., Strijder, C., Sze, 
					S.K., Choo, A., Piek, J.J., Doevendans, P.A., Pasterkamp, G. 
					and de Kleijn, D.P. (2011) Human mesenchymal stem 
					cell-conditioned medium improves cardiac function following 
					myocardial infarction. Stem. Cell Res., 6(3): 206-214. http://dx.doi.org/10.1016/j.scr.2011.01.001
 PMid:21419744
 |  
					|  |  
					| 3. Mishra, P.J. and Banerjee, D. (2012) Cell-free 
					derivatives from mesenchymal stem cells are effective in 
					wound therapy. World J. Stem. Cells, 4(5): 35-43. http://dx.doi.org/10.4252/wjsc.v4.i5.35
 PMid:22993660 PMCid:PMC3443710
 |  
					|  |  
					| 4. Hynes, B., Kumar, A.H.S., O'Sullivan, J., Buneker, C.K., 
					Leblond, A.L., Weiss, S., Schmeckpeper, J., Martin, K. and 
					Caplice, N.M. (2013) Potent endothelial progenitor 
					cell-conditioned media-related anti-apoptotic, cardiotrophic, 
					and pro-angiogenic effects post-myocardial infarction are 
					mediated by insulin-like growth factor-1. Eur. Heart J., 
					34(10): 782-789. http://dx.doi.org/10.1093/eurheartj/ehr435
 PMid:22173909
 |  
					|  |  
					| 5. Kim, H.O. and Choi, S. (2013) Mesenchymal stem 
					cell-derived secretome and microvesicles as a cell-free 
					therapeutics for neurodegenerative disorders. J. Tissue Eng. 
					Reg. Med., 10(3): 93-101. http://dx.doi.org/10.1007/s13770-013-0010-7
 |  
					|  |  
					| 6. Pawitan, J.A. (2014) Prospect of stem cell conditioned 
					medium in regenerative medicine - A review. BioMed. Res. 
					Int., 2014: Article ID:965849, 14. |  
					|  |  
					| 7. White, N.H., Sun, W., Cleary, P.A., Danis, R.P., Davis, 
					M.D., Hainsworth, D.P., Hubbard, L.D., Lachin, J.M. and 
					Nathan, D.M. (2008) Prolonged effect of intensive therapy 
					onthe risk of retinopathy complications in patients with 
					Type 1 diabetes mellitus: 10 years after the diabetes 
					control and complications trial. Arch. Ophthalmol., 126(12): 
					1707-1715. http://dx.doi.org/10.1001/archopht.126.12.1707
 PMid:19064853 PMCid:PMC2663518
 |  
					|  |  
					| 8. Ho, J.C.Y., Lai, W. and Li, M. (2012) Reversal of 
					endothelial progenitor cell dysfunction in patients with 
					type 2 diabetes using a conditioned medium of human 
					embryonic stem cell derived endothelial cells. Diabetes 
					Metab. Res., 28(5): 462-473. http://dx.doi.org/10.1002/dmrr.2304
 PMid:22492468
 |  
					|  |  
					| 9. Zagoura, D.S., Roubelakis, M.G. and Bitsika, V. (2012) 
					Therapeutic potential of a distinct population of human 
					amniotic fluid mesenchymal stem cells and their secreted 
					molecules in mice with acute hepatic failure. Gut, 61(6): 
					894-906. http://dx.doi.org/10.1136/gutjnl-2011-300908
 PMid:21997562
 |  
					|  |  
					| 10. Bhang, S.H., Lee, S., Shin, J.Y., Lee, T.J., Jang, H.K. 
					and Kim, B.S. (2014) Efficacious and clinically relevant 
					conditioned medium of human adipose-derived stem cells for 
					therapeutic angiogenesis, Mol. Ther. Oncol., 22(4): 862. http://dx.doi.org/10.1038/mt.2013.301
 |  
					|  |  
					| 11. Sze, S.K., de Kleijn, D.P.V. and Lai, R.C. (2007) 
					Elucidating the secretion proteome of human embryonic stem 
					cell-derived mesenchymal stem cells. Mol. Cell Proteomics, 
					6(10): 1680-1689. http://dx.doi.org/10.1074/mcp.M600393-MCP200
 PMid:17565974
 |  
					|  |  
					| 12. Shen, C., Lie, P., Miao, T., Yu, M., Lu, Q., Feng, T., 
					Li, J., Zu, T., Liu, X. and Li, H. (2015) Conditioned medium 
					from umbilical cord mesenchymal stem cells induces migration 
					and angiogenesis. Mol. Med. Rep., 12(1): 20-30. http://dx.doi.org/10.3892/mmr.2015.3409
 |  
					|  |  
					| 13. Kumar, P., Taha, A., Kumar, N., Kumar, V. and Baquer, 
					N.Z. (2015) Sodium orthovanadate and Trigonella foenum 
					graecum prevents neuronal parameters decline and impaired 
					glucose homeostasis in alloxan diabetic rats. Prague. Med. 
					Rep., 116(2): 122-38. http://dx.doi.org/10.14712/23362936.2015.51
 PMid:26093667
 |  
					|  |  
					| 14. Kimura, N., Shiraishi, S., Mizunashi, K., Ohtsu, H. and 
					Kimura, I. (2001) synaptotagmin I expression in mast cells 
					of normal human tissues, syste mic mast cell disease, and a 
					human mast cell leukemia cell line. J. Histochem. Cytochem., 
					49(3): 341-346. http://dx.doi.org/10.1177/002215540104900308
 |  
					|  |  
					| 15. Chabot, J.M. (2002) A Report from the World Health 
					Organization. Rev. Pract., 52(19): 2155-2156. |  
					|  |  
					| 16. Kort, H.D., Koning, E.J.D., Rabelink, T.J., Bruijn, J.A. 
					and Bajema, I.M. (2011) Islet transplantation in Type 1 
					diabetes. Br. Med. J., 342: d217. http://dx.doi.org/10.1136/bmj.d217
 |  
					|  |  
					| 17. Goldner, M.G. and Gomori, G. (1944) Studies on the 
					mechanism of alloxan diabetes. ISRN Endocrinol., 35(4): 241. http://dx.doi.org/10.1210/endo-35-4-241
 |  
					|  |  
					| 18. Lenzen, S. (2008) The mechanisms of alloxan-and 
					streptozotocin-induced diabetes. Diabetologia, 51(2): 
					216-226. http://dx.doi.org/10.1007/s00125-007-0886-7
 PMid:18087688
 |  
					|  |  
					| 19. Szkudelski, T., Kandulska, K. and Okulicz, M. (1998) 
					Alloxan in vivo does not only exert deleterious effects on 
					pancreatic B cells. Physiol. Res., 47: 343-346. PMid:10052602
 |  
					|  |  
					| 20. Kliber, A., Szkudelski, T. and Chichlowska, J. (1996) 
					Alloxan stimulation and subsequent inhibition of insulin 
					release from in situ perfused rat pancreas. J. Physiol. 
					Pharmacol., 47: 321-328. PMid:8807559
 |  
					|  |  
					| 21. Ooi, Y.Y., Dheen, S.T. and Tay, S.S. (2015) Paracrine 
					effects of mesenchymal stem cells-conditioned medium on 
					microglial cytokines expression and nitric oxide production. 
					Neuroimmunomodulation, 22(4): 233-242. http://dx.doi.org/10.1159/000365483
 |  
					|  |  
					| 22. Mansouri, A. (2012) Development and regeneration in the 
					endocrine pancreas – Review article. ISRN Endocrinol., 2012: 
					Article ID:640956, 12. |  
					|  |  
					| 23. Chen, Y., Xiang, L.X., Shao, J.Z., Pan, R.L., Wang, Y.X., 
					Dong, X.J. and Zhang, G.R. (2010) Recruitment of endogenous 
					bone marrow mesenchymal stem cells towards injured liver. J. 
					Cell Mol. Med., 14(6B): 1494-1508. http://dx.doi.org/10.1111/j.1582-4934.2009.00912.x
 |  
					|  |  
					| 24. Tasso, R., Augello, A., Boccardo, S., Salvi, S., Caridà, 
					M., Postiglione, F., Fais, F., Truini, Cancedda, R. and 
					Pennesi, G. (2009) Recruitment of host's osteoprogenitor 
					cells using exogenous mesenchymal stem cells seeded on 
					porousceramic. Tissue Eng. Pt. A., 15(8): 2203-2212. http://dx.doi.org/10.1089/ten.tea.2008.0269
 PMid:19265473
 |  
					|  |  
					| 25. Shyu, W.C., Lee, Y.J., Liu, D.D., Lin, S.Z. and Li, H. 
					(2006) Homing genes, cell therapy and stroke. Front. Biosci., 
					11: 899-907. http://dx.doi.org/10.2741/1846
 PMid:16146779
 |  
					|  |  
					| 26. Borowiak, M. and Melton, D.A. (2009) How to make beta 
					cells? Curr. Opin. Cell Biol., 21(6): 727-732. http://dx.doi.org/10.1016/j.ceb.2009.08.006
 PMid:19781928 PMCid:PMC4617625
 |  
					|  |  
					| 27. Bonner-Weir, S. and Weir, G.C. (2005) New sources of 
					pancreatic beta-cells. Nat. Biotechnol., 23(7): 857-861. http://dx.doi.org/10.1038/nbt1115
 PMid:16003374
 |  
					|  |  
					| 28. Porat, S. and Dor, Y. (2007) New sources of pancreatic 
					beta cells. Curr. Diabetes Rep., 7(4): 304-308. http://dx.doi.org/10.1007/s11892-007-0049-8
 |  
					|  |  
					| 29. Alismail, H. and Jin, S. (2014) Microenvironmental 
					stimuli for proliferation of functional islet β-cells. Cell. 
					Biosci., 4(1): 4-12. http://dx.doi.org/10.1186/2045-3701-4-12
 |  |