| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 21-11-2016)  
              19. 
				
              
              Chronic exposure to indoxacarb and pulmonary 
              expression of toll-like receptor-9 in mice - 
              
              Sandeep Kaur, C. S. Mukhopadhyay and R. S. Sethi 
              
              Veterinary World, 9(11): 1282-1286   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.1282-1286 
                
				  
                
                Sandeep Kaur: 
                
                School of Animal Biotechnology, Guru Angad Dev Veterinary and 
                Animal Sciences University, Ludhiana - 141 004, Punjab, India; 
                sndp4482@gmail.com 
              
              C. S. Mukhopadhyay: 
              
              School of Animal Biotechnology, Guru Angad Dev Veterinary and 
              Animal Sciences University, Ludhiana - 141 004, Punjab, India; 
              csmbioinfo@gmail.com 
              
              R. S. Sethi: 
              
              School of Animal Biotechnology, Guru Angad Dev Veterinary and 
              Animal Sciences University, Ludhiana - 141 004, Punjab, India; 
              rs.sethi@usask.ca   
              
              Received: 25-04-2016, Accepted: 14-10-2016, Published online: 
              21-11-2016   
				
              	
              	Corresponding author: 
              	
                
                R. S. Sethi, e-mail: rs.sethi@usask.ca 
 
              Citation: 
				
              Kaur S, Mukhopadhyay CS, Sethi RS (2016) Chronic exposure to 
              indoxacarb and pulmonary expression of toll-like receptor-9 in 
              mice, 
              
              Veterinary World, 9(11): 
              1282-1286. 
 
              
				Abstract 
 
              
              
              Aim: 
              
              Chronic exposure to indoxacarb and pulmonary expression of 
              toll-like receptor 9 (TLR-9) in mice. 
              
              
              Materials and Methods: 
              
              In this study, healthy male Swiss albino mice (n=30) aging 8-10 
              weeks were used to evaluate TLR-9 expression in lungs of mice 
              following indoxacarb exposure with and without lipopolysaccharide 
              (LPS). Indoxacarb was administered orally dissolved in groundnut 
              oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from 
              each group were challenged with LPS/normal saline solution at 80 
              μg/animal. The lung tissues were processed for real time and 
              immunohistochemical studies. 
              
              
              Results: 
              
              LPS resulted increase in fold change m-RNA expression level of 
              TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and 
              in combination with LPS resulted 16.21-fold change and 29.4-fold 
              change increase in expression of TLR-9 m-RNA, respectively, as 
              compared to control. Similarly, indoxacarb (2 mg/kg) alone or in 
              combination with LPS also altered TLR-9 expression. Further at 
              protein level control group showed minimal expression of TLR-9 in 
              lungs as compare to other groups, however, LPS group showed 
              intense positive staining in bronchial epithelium as well as in 
              alveolar septal cells. Indoxacarb at both doses individually 
              showed strong immuno-positive reaction as compare to control, 
              however when combined with LPS resulted intense staining in airway 
              epithelium as compare to control. 
              
              
              Conclusion: 
              
              Chronic oral administration of indoxacarb for 90 days (4 and 2 
              mg/kg) alters expression of TLR-9 at m-RNA and protein level and 
              co-exposure with LPS exhibited synergistic effect. 
              
              Keywords: 
              
              indoxacarb, lipopolysaccharide, lungs, mice, toll-like receptor-9. 
 
              References 
 
                
                  | 1. US EPA. (1996) Pesticide Industry Sales and Usage: Market 
                  Estimates. Available from: http://link.lvccld.org/portal/Pesticide-industry-sales-and-usage-Online-/X8jiI9zvgxY/. 
                  Accessed on 12-11-2015. |  
                  |  |  
                  | 2. Banerjee, B.D., Koner, B.C. and Ray, A. (1996) 
                  Immunotoxicity of pesticides: Perspectives and trends. Indian 
                  J. Exp. Biol., 34(8): 723-733. PMid:8979476
 |  
                  |  |  
                  | 3. Bolognesi, C. (2003) Genotoxicity of pesticides: A review 
                  of human biomonitoring studies. Mutat. Res., 543: 251-272. https://doi.org/10.1016/S1383-5742(03)00015-2
 |  
                  |  |  
                  | 4. Marrs, T.C. and Dewhurst, I.C. (2012) Toxicology of some 
                  insecticides not discussed elsewhere. In: Marrs, T.C., editor. 
                  Toxicology of Insecticides. RSC Publishing, Cambridge, UK. 
                  p288-301. https://doi.org/10.1039/9781849733007-00288
 |  
                  |  |  
                  | 5. US EPA. (2007). Indoxacarb; Pesticide tolerance. In: Office 
                  of Prevention Pesticides and Toxic Substances, editor. Federal 
                  Registrar, Available from https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-067710_30-Oct-10.pdf. 
                  Accessed on 10-10-2015.. |  
                  |  |  
                  | 6. Zhou, B., Zhou, H., Ling, S., Guo, D., Yan, Y., Zhou, F. 
                  and Wu, Y. (2011) Activation of PAR2 or/and TLR4 promotes 
                  SW620 cell proliferation and migration via phosphorylation of 
                  ERK1/2. Oncol. Rep., 25: 503-511. https://doi.org/10.3892/or.2010.1077
 PMid:21152870
 |  
                  |  |  
                  | 7. Rutz, M., Metzger, J., Gellert, T., Luppa, P., Lipford, G.B., 
                  Wagner, H. and Bauer, S. (2004) Toll-like receptor 9 binds 
                  single-stranded CpG-DNA in a sequence- and pH-dependent 
                  manner. Eur J. Immunol., 34: 2541-2550. https://doi.org/10.1002/eji.200425218
 PMid:15307186
 |  
                  |  |  
                  | 8. Krieg, A.M. (2002) CpG motifs in bacterial DNA and their 
                  immune effects. Ann. Rev. Immunol., 20: 709-760. https://doi.org/10.1146/annurev.immunol.20.100301.064842
 PMid:11861616
 |  
                  |  |  
                  | 9. Schneberger, D., Caldwell, S., Kanthan, R. and Singh, B. 
                  (2013) Expression of toll-like receptor 9 in mouse and human 
                  lungs. J. Anat., 222: 495-503. https://doi.org/10.1111/joa.12039
 PMid:23521717 PMCid:PMC3633339
 |  
                  |  |  
                  | 10. Schwartz, D.A., Quinn, T.J., Thorne, P.S., Sayeed, S., Yi, 
                  A.K. and Krieg, A.K. (1997) CpG motifs in bacterial DNA cause 
                  inflammation in the lower respiratory tract. J. Clin. Invest., 
                  100: 68-73. https://doi.org/10.1172/JCI119523
 PMid:9202058 PMCid:PMC508166
 |  
                  |  |  
                  | 11. Knuefermann, P., Baumgarten, G., Koch, A., Schwederski, 
                  M., Velten, M., Ehrentraut, H., Mersmann, J., Meyer, R., Hoeft, 
                  A., Zacharowski, K. and Grohe, C. (2007) CpG oligonucleotide 
                  activates Toll-like receptor 9 and causes lung inflammation in 
                  vivo. Respir. Res., 8: 72-80. https://doi.org/10.1186/1465-9921-8-72
 PMid:17925007 PMCid:PMC2173891
 |  
                  |  |  
                  | 12. Parilla, N.W., Hughes, V.S., Lierl, K.M., Wong, R.W. and 
                  Page, K. (2006) CpG DNA modulates interleukin 1β-induced 
                  interleukin-8 expression in human bronchial epithelial 
                  (16HBE14o-) cells. Respir. Res., 7: 84-92. https://doi.org/10.1186/1465-9921-7-84
 PMid:16740161 PMCid:PMC1489942
 |  
                  |  |  
                  | 13. Schwartz, D.A., Wohlford-Lenane, C.L., Quinn, T.J. and 
                  Krieg, A.M. (1999) Bacterial DNA or oligonucleotides 
                  containing unmethylated CpG motifs can minimize 
                  lipopolysaccharide-induced inflammation in the lower 
                  respiratory tract through an IL-12-dependent pathway. J. 
                  Immunol., 163: 224-231. PMid:10384120
 |  
                  |  |  
                  | 14. West, A.P., Shadel, G.S. and Ghosh, S. (2011) Mitochondria 
                  in innate immune responses. Nat. Rev. Immunol., 11: 389-402. https://doi.org/10.1038/nri2975
 PMid:21597473 PMCid:PMC4281487
 |  
                  |  |  
                  | 15. Michel, O. (2000) Systemic and local airways inflammatory 
                  response to endotoxin. Toxicology, 152: 25-30. https://doi.org/10.1016/S0300-483X(00)00288-2
 |  
                  |  |  
                  | 16. Michel, O., Dentener, M., Corazza, F., Buurman, W. and 
                  Rylander, R. (2001) Healthy subjects express differences in 
                  clinical responses to inhaled lipopolysaccharide that are 
                  related with inflammation and with atopy. J. Allergy Clin. 
                  Immunol., 107: 797-804. https://doi.org/10.1067/mai.2001.114249
 PMid:11344345
 |  
                  |  |  
                  | 17. Duramad, P., Tager, I.B., Leikauf, J., Eskenazi, B. and 
                  Holland, N.T. (2006) Expression of Th1/Th2 cytokines in human 
                  blood after in vitro treatment with chlorpyrifos, and its 
                  metabolites, in combination with endotoxin LPS and allergen 
                  Der p1. J. Appl. Toxicol., 26(5): 458-465. https://doi.org/10.1002/jat.1162
 PMid:16871525
 |  
                  |  |  
                  | 18. Nagajyothi, F., Desruisseaux, M.S., Machado, F.S., Upadhya, 
                  R., Zhao, D., Schwartz, G.J., Teixeira, M.M., Albanese, C., 
                  Lisanti, M.P., Chua, S.C.Jr., Weiss, L.M., Scherer, P.E. and 
                  Tanowitz, H.B. (2012) Response of adipose tissue to early 
                  infection with Trypanosoma cruzi (Brazil strain). J. Infect. 
                  Dis., 205(5): 830-840. https://doi.org/10.1093/infdis/jir840
 PMid:22293433 PMCid:PMC3274374
 |  
                  |  |  
                  | 19. Guo, S., Al-Sadi, R., Said, H.M. and Ma, T.Y. (2013) 
                  Lipopolysaccharide causes an increase in intestinal tight 
                  junction permeability in vitro and in vivo by inducing 
                  enterocyte membrane expression and localization of TLR-4 and 
                  CD14. Am. J. Pathol., 182(2): 375-387. https://doi.org/10.1016/j.ajpath.2012.10.014
 PMid:23201091 PMCid:PMC3562736
 |  
                  |  |  
                  | 20. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of 
                  relative gene expression data using real-time quantitative PCR 
                  and the 2(-Delta Delta C (T) method. Methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
 PMid:11846609
 |  
                  |  |  
                  | 21. Pandit, A.A., Choudhary, S., Ramneek, Singh, B. and Sethi, 
                  R.S. (2016) Imidacloprid induced histomorphological changes 
                  and expression of TLR-4 and TNFα in lung. Pest. Biochem. 
                  Physiol., 131: 9-17. https://doi.org/10.1016/j.pestbp.2016.02.004
 PMid:27265821
 |  
                  |  |  
                  | 22. Ben, D.F., Yu, X.Y., Ji, G.Y., Zheng, D.Y., Lv, K.Y., Ma, 
                  B. and Xia, Z.F. (2012) TLR4 mediates lung injury and 
                  inflammation in intestinal ischemia-reperfusion. J. Surg. 
                  Res., 174(2): 326-333. https://doi.org/10.1016/j.jss.2010.12.005
 PMid:21392794
 |  
                  |  |  
                  | 23. Aharonson-Raz, K., Lohmann, K.L., Townsend, H.G., Marques, 
                  F. and Singh, B. (2012) Pulmonary intravascular macrophages as 
                  proinflammatory cells in heaves, an asthma-like equine 
                  disease. Am. J. Physiol. Lung. Cell. Mol. Physiol., 303(3): 
                  L189-L198. https://doi.org/10.1152/ajplung.00271.2011
 |  
                  |  |  
                  | 24. Hoppstadter, J., Diesel, B., Zarbock, R., Breinig, T., 
                  Monz, D., Koch, M., Meyerhans, A., Gortner, L., Lehr, C.M., 
                  Huwer, H. and Kiemer, A.K. (2010) Differential cell reaction 
                  upon toll-like receptor 4 and 9 activation inhuman alveolar 
                  and lung interstitial. Respir. Res., 11: 124. https://doi.org/10.1186/1465-9921-11-124
 PMid:20843333 PMCid:PMC2949727
 |  
                  |  |  
                  | 25. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., 
                  Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. 
                  and Akira, S. (2000) A toll-like receptor recognizes bacterial 
                  DNA. Nature, 408: 740-745. https://doi.org/10.1038/35047123
 PMid:11130078
 |  
                  |  |  
                  | 26. Cardon, L.R., Burge, C., Clayton, D.A. and Karlin, S. 
                  (1994) Pervasive CpG suppression in animal mitochondrial 
                  genomes. Proc. Natl. Acad. Sci. USA., 91: 3799-3803. https://doi.org/10.1073/pnas.91.9.3799
 PMid:8170990 PMCid:PMC43669
 |  
                  |  |  
                  | 27. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., 
                  Junger, W., Brohi, K., Itagaki, K. and Hauser, C.J. (2010) 
                  Circulating mitochondrial DAMPs cause inflammatory responses 
                  to injury. Nature, 464: 104-107. https://doi.org/10.1038/nature08780
 PMid:20203610 PMCid:PMC2843437
 |  
                  |  |  
                  | 28. Yeo, S.J., Yoon, J.G., Hong, S.C. and Yi, A.K. (2003) CpG 
                  DNA induces self and cross-hyporesponsiveness of RAW264.7 
                  cells in responseto CpG DNA and lipopolysaccharide: 
                  Alterations in IL-1 receptor associated kinase expression. J. 
                  Immunol., 170: 1052-1061. https://doi.org/10.4049/jimmunol.170.2.1052
 PMid:12517973
 |  
                  |  |  
                  | 29. Jozsef, L., Khreiss, T. and Filep, J.G. (2004) CpG motifs 
                  in bacterial DNA delay apoptosis of neutrophil granulocytes. 
                  FASEB J., 18: 1776-1778. https://doi.org/10.1096/fj.04-2048fje
 |  
                  |  |  
                  | 30. Platz, J., Beisswenger, C., Dalpke, A., Koczulla, R., 
                  Pinkenburg, O., Vogelmeier, C. and Bals, R. (2004) Microbial 
                  DNA induces a host defense reaction of human respiratory 
                  epithelial cells. J. Immunol., 173(2): 1219-123. https://doi.org/10.4049/jimmunol.173.2.1219
 |  
                  |  |  
                  | 31. Demedts, I.K., Bracke, K.R., Maes, T., Joos, G.F. and 
                  Brusselle, G.G. (2006) Different roles for human lung 
                  dendritic cell subsets inpulmonary immune defense mechanisms. 
                  Am. J. Respir. Cell Mol. Biol., 35: 387-393. https://doi.org/10.1165/rcmb.2005-0382OC
 PMid:16627825
 |  
                  |  |  
                  | 32. Schneberger, D., Caldwell, S., Suri, S.S. and Singh, B. 
                  (2009) Expression of toll-like receptor 9 in horse lungs. 
                  Anat. Rec., 292: 1068-1077. https://doi.org/10.1002/ar.20927
 PMid:19548205
 |  
                  |  |  
                  | 33. Schneberger, D., Lewis, D., Caldwell, S. and Singh, B. 
                  (2011b) Expression of toll-like receptor 9 in lungs of pigs, 
                  dogs and cattle. Int. J. Exp. Pathol., 92: 1-7. https://doi.org/10.1111/j.1365-2613.2010.00742.x
 PMid:21044185 PMCid:PMC3052751
 |  
                  |  |  
                  | 34. Nakadai, A., Li, Q. and Kawada, T. (2006) Chlorpyrifos 
                  induces apoptosis in human monocyte cell line U937. 
                  Toxicology, 224(3): 202-209. https://doi.org/10.1016/j.tox.2006.04.055
 PMid:16787693
 |  
                  |  |  
                  | 35. Kiemer, A.K., Senaratne, R.H., Hoppstadter, J., Diesel, 
                  B., Riley, L.W., Tabeta, K., Bauer, S., Beutler, B. and Zuraw, 
                  B.L. (2008) Attenuated activation of macrophage TLR9 by DNA 
                  from virulent mycobacteria. J. Innate Immun., 1: 29-45. https://doi.org/10.1159/000142731
 PMid:20375564
 |  
                  |  |  
                  | 36. Merkowsky, K., Sethi, R.S., Gill, J.P.S. and Singh, B. 
                  (2016) Fipronil induces lung inflammation in vivo and cell 
                  death in vitro. J. Occup. Med. Toxicol., 11: 10. https://doi.org/10.1186/s12995-016-0102-0
 PMid:26997970 PMCid:PMC4797133
 |  
                  |  |  
                  | 37. Schaumann, F., Müller, M., Braun., A., Luettig, B., Peden, 
                  D.B., Hohlfeld, J.M. and Krug, N. (2008) Endotoxin augments 
                  myeloid dendritic cell influx into the airways in patients 
                  with allergic asthma. Am. J. Respir. Crit. Care Med., 177(12): 
                  1307-1313. https://doi.org/10.1164/rccm.200706-870OC
 PMid:18388357 PMCid:PMC2427055
 |  
                  |  |  
                  | 38. Ilmarinen, P., Hasala, H., Sareila, O., Moilanen, E. and 
                  Kankaanranta, H. (2009) Bacterial DNA delays human eosinophil 
                  apoptosis. Pulm. Pharmacol. Ther., 22: 167-176. https://doi.org/10.1016/j.pupt.2008.11.012
 PMid:19073274
 |  |