| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 10-11-2016)  
              9. 
				
              
              Biocomputational analysis of evolutionary 
              relationship between toll-like receptor and nucleotide-binding 
              oligomerization domain-like receptors genes - 
              
              Rabia Bhardwaj, Chandra Shekhar Mukhopadhyay, Dipak Deka, Ramneek 
              Verma, P. P. Dubey and J. S. Arora 
              
              Veterinary World, 9(11): 1218-1228   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.1218-1228 
                
				  
                
                Rabia Bhardwaj: 
                
                School of Animal Biotechnology, Guru Angad Dev Veterinary and 
                Animal Sciences University, Ludhiana, Punjab, India; 
                bhardwajrabia@gmail.com 
              
              Chandra Shekhar Mukhopadhyay: 
              
              School of Animal Biotechnology, Guru Angad Dev Veterinary and 
              Animal Sciences University, Ludhiana, Punjab, India; csmbioinfo@gmail.com 
              
              Dipak Deka: 
              
              School of Animal Biotechnology, Guru Angad Dev Veterinary and 
              Animal Sciences University, Ludhiana, Punjab, India; deepakdeka@gmail.com 
              
              Ramneek Verma: 
              
              School of Animal Biotechnology, Guru Angad Dev Veterinary and 
              Animal Sciences University, Ludhiana, Punjab, India; ramneek.verma@gmail.com 
              
              P. P. Dubey: 
              
              Department of Animal Genetics and Breeding, Guru Angad Dev 
              Veterinary and Animal Sciences University, Ludhiana, Punjab, 
              India; prakashagb@gmail.com 
              
              J. S. Arora: 
              
              School of Animal Biotechnology, Guru Angad Dev Veterinary and 
              Animal Sciences University, Ludhiana, Punjab, India; drarora2003@gmail.com   
              
              Received: 03-05-2016, Accepted: 01-10-2016, Published online: 
              10-11-2016   
				
              	
              	Corresponding author: 
              	
                
                Chandra Shekhar Mukhopadhyay, e-mail: csmbioinfo@gmail.com 
 
              Citation: 
				
              Bhardwaj R, Mukhopadhyay CS, Deka D, Verma R, Dubey PP, Arora JS 
              (2016) Biocomputational analysis of evolutionary relationship 
              between toll-like receptor and nucleotidebinding oligomerization 
              domain-like receptors genes, 
              
              Veterinary World, 9(11): 
              1218-1228. 
 
              
				Abstract 
 
              
              
              Aim: 
              
              The active domains (TIR and NACHT) of the pattern recognition 
              receptors (PRRs: Toll-like receptors [TLRs] and nucleotide-binding 
              oligomerization domain [NOD]-like receptors [NLR], respectively) 
              are the major hotspots of evolution as natural selection has 
              crafted their final structure by substitution of residues over 
              time. This paper addresses the evolutionary perspectives of the 
              TLR and NLR genes with respect to the active domains in terms of 
              their chronological fruition, functional diversification, and 
              species-specific stipulation. 
              
              
              Materials and Methods: 
              A 
              total of 48 full-length cds (and corresponding peptide) of the 
              domains were selected as representatives of each type of PRRs, 
              belonging to divergent animal species, for the biocomputational 
              analyses. The secondary and tertiary structure of the taurine TIR 
              and NACHT domains was predicted to compare the relatedness among 
              the domains under study.  
              
              
              Results: 
              
              Multiple sequence alignment and phylogenetic tree results 
              indicated that these host-specific PRRs formed entirely different 
              clusters, with active domains of NLRs (NACHT) evolved earlier as 
              compared to the active domains of TLRs (TIR). Each type of TLR or 
              NLR shows comparatively less variation among the animal species 
              due to the specificity of action against the type of microbes. 
              
              
              Conclusion: 
              
              It can be concluded from the study that there has been no positive 
              selection acting on the domains associated with disease resistance 
              which is a fitness trait indicating the extent of purifying 
              pressure on the domains. Gene duplication could be a possible 
              reason of genesis of similar kinds of TLRs (virus or bacteria 
              specific). 
              
              Keywords: 
              
              bioinformatics, domain, evolution, nucleotide-binding 
              oligomerization domain-like receptors, selection pressure, 
              toll-like receptor. 
 
              References 
 
                
                  | 1. Janeway, C.A. and Medzhitov, R. (2002) Innate immune 
                  recognition. Annu. Rev. Immunol., 20: 197-216. https:/doi.org/10.1146/annurev.immunol.20.083001.084359
 PMid:11861602
 |  
                  |  |  
                  | 2. Zhang, Q., Zmasek, C.M. and Godzik, A. (2010) Domain 
                  architecture evolution of pattern-recognition receptors. 
                  Immunogenetics, 62: 263-272. https:/doi.org/10.1007/s00251-010-0428-1
 PMid:20195594 PMCid:PMC2858798
 |  
                  |  |  
                  | 3. Tan, R., Ho, B., Leung, B.P. and Ding, J.L. (2014) TLR 
                  cross-talk confers specificity to innate immunity. Int. Rev. 
                  Immunol., 33: 443-453. https:/doi.org/10.3109/08830185.2014.921164
 PMid:24911430 PMCid:PMC4266099
 |  
                  |  |  
                  | 4. Langefeld, T., Mohamed, W., Ghai, R. and Chakraborty, T. 
                  (2009) Toll like receptors and NOD-like receptors: Domain 
                  architecture and cellular signalling. Adv. Exp. Med. Biol., 
                  653: 48-57. https:/doi.org/10.1007/978-1-4419-0901-5_4
 PMid:19799111
 |  
                  |  |  
                  | 5. Park, J.H., Kim, Y.G., Shaw, M., Kanneganti, T.D., 
                  Fujimoto, Y., Fukase, K., Inohara, N. and Nú-ez, G. (2007) 
                  Nod1/RICK and TLR signaling regulate chemokine and 
                  antimicrobial innate immune responses in mesothelial cells. J. 
                  Immunol., 179: 514-221. https:/doi.org/10.4049/jimmunol.179.1.514
 PMid:17579072
 |  
                  |  |  
                  | 6. Proell, M., Riedl, S.J., Fritz, J.H., Rojas, A.M. and 
                  Schwarzenbacher, R. (2008) The nod-like receptor (NLR) family: 
                  A tale of similarities and differences. PLoS One, 3(4): e2119. https:/doi.org/10.1371/journal.pone.0002119
 |  
                  |  |  
                  | 7. Istomin, A.Y. and Godzik, A. (2009) Understanding diversity 
                  of human innate immunity receptors: Analysis of surface 
                  features of leucine-rich repeat domains in NLRs and TLRs. BMC 
                  Immunol., 10(48): 1471-2172. https:/doi.org/10.1186/1471-2172-10-48
 |  
                  |  |  
                  | 8. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and 
                  Kumar, S. (2013) MEGA6: molecular evolutionary genetics 
                  analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729. https:/doi.org/10.1093/molbev/mst197
 PMid:24132122 PMCid:PMC3840312
 |  
                  |  |  
                  | 9. Felsenstein, J. (1981) Evolutionary trees from DNA 
                  sequences: A maximum likelihood approach. J. Mol. Evol., 
                  17(6): 368-376. https:/doi.org/10.1007/BF01734359
 |  
                  |  |  
                  | 10. Nei, M. and Kumar, S. (2000) Molecular Evolution and 
                  Phylogenetics. Oxford University Press, New York. p333. |  
                  |  |  
                  | 11. Tamura, K., Nei, M. and Kumar, S. (2011) Prospects for 
                  inferring very large phylogenies by using the neighbor-joining 
                  method. Proc. Natl. Acad. Sci. USA., 101: 11030-11035. https:/doi.org/10.1073/pnas.0404206101
 PMid:15258291 PMCid:PMC491989
 |  
                  |  |  
                  | 12. Pond, S.L.K., Murrell, B., Fourment, M., Frost, S.D.W., 
                  Delport, W. and Scheffler, K. (2011) A random effects branch 
                  site model for detecting episodic diversifying selection. Mol. 
                  Biol. Evol., 28: 3033-3043. https:/doi.org/10.1093/molbev/msr125
 PMid:21670087 PMCid:PMC3247808
 |  
                  |  |  
                  | 13. Areal, H., Abrantes, J. and Esteves, P.J. (2011) 
                  Signatures of positive selection in Toll-like receptor (TLR) 
                  genes in mammals. BMC Evol. Biol., 11(368): 1471-2148. https:/doi.org/10.1186/1471-2148-11-368
 |  
                  |  |  
                  | 14. Tian, X., Pascal, G. and Monget, P. (2009) Evolution and 
                  functional divergence of NLRP genes in mammalian reproductive 
                  systems. BMC Evol. Biol., 9(202): 1471-2148. https:/doi.org/10.1186/1471-2148-9-202
 |  
                  |  |  
                  | 15. Howe, K., Schiffer, P.H., Zielinski, J., Wiehe, T., Laird, 
                  G.K., Marioni, J.C., Soylemez, O., Kondrashov, F. and Leptin, 
                  M. (2015) Structure and evolutionary history of a large family 
                  of NLR proteins in the zebrafish. Available from: http://www.dx.doi.org/10.1101/022061. 
                  Cited on 07-07-2015. |  
                  |  |  
                  | 16. Kaur, J., Mukhopadhyay, C.S., Dhanoa, J.K., Sethi, R.S. 
                  and Arora, J.S. (2015) Expression profiling and in silico 
                  characterization of bubaline Drosha in light of evolution. 
                  Int. J. Adv. Res., 3(11): 2956-2966. |  
                  |  |  
                  | 17. Huang, L., Fan, Y., Zhou, Y., Jiang, N., Liu, W.Z., Meng, 
                  Y. and Zeng, L.B. (2015) Cloning, sequence analysis and 
                  expression profiles of toll-like receptor 7 from Chinese giant 
                  salamander Andrias davidianus. Comp. Biochem. Physiol. B., 
                  184: 52-57. https:/doi.org/10.1016/j.cbpb.2015.02.006
 PMid:25754925
 |  
                  |  |  
                  | 18. Alcaide, M. and Edwards, S.V. (2011) Molecular evolution 
                  of the toll-like receptor multigene family in birds. Mol. 
                  Biol. Evol., 28(5): 1703-1715. https:/doi.org/10.1093/molbev/msq351
 PMid:21239391
 |  
                  |  |  
                  | 19. Roach, J.M., Racioppi, L., Jones, C.D. and Masci, A.M. 
                  (2013) Phylogeny of toll-like receptor signaling: Adapting the 
                  innate response. PLoS One, 8(1): e54156. https:/doi.org/10.1371/journal.pone.0054156
 |  
                  |  |  
                  | 20. Zhou, X., Lin, Z., Ma, H. (2010) Phylogenetic detection of 
                  numerous gene duplications shared by animals, fungi and 
                  plants. Genome Biol., 11(4): R38. https:/doi.org/10.1186/gb-2010-11-4-r38
 |  
                  |  |  
                  | 21. Huang, Y., Temperley, N.D., Ren, L., Smith, J., Li, N. and 
                  Burt, D.W. (2011) Molecular evolution of the vertebrate TLR1 
                  gene family - A complex history of gene duplication, gene 
                  conversion, positive selection and co-evolution. BMC Evol. 
                  Biol., 11(149): 1471-2148. https:/doi.org/10.1186/1471-2148-11-149
 |  
                  |  |  
                  | 22. Temperley, N.D., Berlin, S., Paton, I.R., Griffin, D.K. 
                  and Burt, D.W. (2008) Evolution of the chicken toll-like 
                  receptor gene family: A story of gene gain and gene loss. BMC 
                  Genomics, 9(62): 1471-2164. https:/doi.org/10.1186/1471-2164-9-62
 |  
                  |  |  
                  | 23. Bhardwaj, R., Brah, G.S., Arora, J., Kaur, S. and 
                  Mukhopadhyay, C.S. (2015) Cloning and molecular 
                  characterization of toll-like receptor 4 (TLR-4) gene in 
                  Indian water buffalo (Bubalus bubalis). Indian Journal of 
                  Animal Sciences, 85(3): 19-24. |  
                  |  |  
                  | 24. Dhaliwal, K.K., Arora, J.S., Mukhopadhyay, C.S. and Dubey, 
                  P.P. (2015) In silico characterization of functional 
                  divergence of two cathelicidin variants in Indian sheep. Evol. 
                  Bioinformatics online., 11: 189-196. PMid:26380546 PMCid:PMC4559185
 |  
                  |  |  
                  | 25. Singh, J., Mukhopadhyay, C.S., Arora, J.S. and Kaur, S. 
                  (2014) Biocomputational and evolutionary analysis of bubaline 
                  dicer1 enzyme. Asian Aust. J. Anim Sciences., 28(6): 876-887. https:/doi.org/10.5713/ajas.14.0767
 PMid:25925065 PMCid:PMC4412985
 |  |