Open Access
Research (Published online: 21-08-2017)
21. Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: Histopathology, liver functions, and oxidative stress biomarkers
H. M. R. Abdel-Latif and A. M. Abou Khashaba
Veterinary World, 10(8): 955-963

H. M. R. Abdel-Latif: Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University (Matrouh Branch), Fuka City, Box: 51744, Matrouh Province, Egypt.
A. M. Abou Khashaba: Department of Food Inspection, Animal Health Research Institute, Dokki, Giza Province, Egypt.

doi: 10.14202/vetworld.2017.955-963

Share this article on [Facebook] [LinkedIn]

Article history: Received: 21-05-2017, Accepted: 28-07-2017, Published online: 21-08-2017

Corresponding author: H. M. R. Abdel-Latif

E-mail: hmhany@alexu.edu.eg

Citation: Abdel-Latif HMR, Khashaba AMA (2017) Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: Histopathology, liver functions, and oxidative stress biomarkers, Veterinary World, 10(8): 955-963.
Abstract

Background: Toxic cyanobacterial blooms (Microcystis aeruginosa contains microcystins [MCs]) have been reported to induce clinicopathological alterations as well as different oxidative stress in aquatic biota.

Aim: Three-week subchronic exposure experiment was carried out on Nile tilapia, to determine their effects on fish behavior, tissues, liver functions, antioxidant enzymes, and lipid peroxidation.

Materials and Methods: Fish were exposed to four main treatments; orally fed diet plus toxic cells of M. aeruginosa (containing 3500 μg/g MC-LR), immersion in 500 μg MC-LR/L, intraperitoneal injection of M. aeruginosa MC-LR with a dose of 0.1 ml of extracted toxin at a dose of 200 μg/kg bwt, and the fourth one served as a control group, then the fish were sacrificed at the end of 3rd week of exposure.

Results: The results revealed no recorded mortality with obvious behavioral changes and an enlarged liver with the congested gall bladder. Histopathology demonstrated fragmentation, hyalinization, and necrosis of the subcutaneous musculature marked fatty degeneration, and vacuolation of hepatopancreatic cells with adhesion of the secondary gill lamellae associated with severe leukocytic infiltration. Furthermore, liver functions enzymes (aspartate aminotransferase and alanine aminotransferase, and the activities of glutathione peroxidase, glutathione reductase, lipid peroxidase, and catalase enzymes) were significantly increased in all treatments starting from the 2nd week as compared to the control levels.

Conclusion: In this context, the study addresses the possible toxicological impacts of toxic M. aeruginosa contain MC-LR to Nile tilapia, and the results investigated that MC-LR is toxic to Nile tilapia in different routes of exposure as well as different doses.

Keywords: catalase, lipid peroxidation, Microcystis aeruginosa, microcystins, Nile tilapia.

References

1. GAFARD. (2013) General Authority for Fish Resources. Fish Production Statistics, 2012. Ministry of Agriculture, Cairo, Egypt.

2. El-Sayed, A.F.M. (2006) Tilapia Culture. CABI Publishing, CABI International, Willingford.

3. Oh, H.M., Lee, S.J., Jang, M.H. and Yoon, B.D. (2000) Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microbiol., 66: 176-179. [Crossref] [PubMed] [PMC]

4. Carmichael, W.W., Azevedo, S.M., An, J.S., Molica, R.J., Jochimsen, E.M. and Lau, S. (2001) Human fatalities from Cyanobacteria: Chemical and biological evidence for cyanotoxins. Environ. Health Perspect., 109: 663-668. [Crossref] [PubMed] [PMC]

5. Chen, T., Wang, Q., Cui, J., Yang, W., Shi, Q., Hua, Z., Ji, J. and Shen, P. (2005) Induction of apoptosis in mouse liver by microcystin-LR. Mol. Cell. Proteomics, 4: 958-974. [Crossref] [PubMed]

6. Chen, J., Xie, P., Li, L. and Xu, J. (2009a) First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol. Sci., 108: 81-89. [Crossref] [PubMed]

7. Trincheta, I., Djediatb, C., Huetc, H., Daoa, S.P. and Ederya, M. (2011) Pathological modifications following sub-chronic exposure of medaka fish (Oryzias latipes) to microcystin-LR. Reprod. Toxicol., 32(3): 329-340. [Crossref] [PubMed]

8. Chen, J., Zhang, D., Xie, P., Wang, Q. and Ma, Z. (2009b) Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Sci. Total Environ., 407: 3317-3322. [Crossref] [PubMed]

9. Susana, R., Francisca, F., Youness, O. and Angel, B. (2012) Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake. Environ. Monit. Assess., 184: 939-949. [Crossref] [PubMed]

10. Schmidt, J.R., Shaskus, M., Estenik, J.F., Oesch, C., Khidekel, R. and Boyer, G.L. (2013) Variations in the microcystin content of different fish species collected from a eutrophic lake. Toxins, 5(5): 992-1009. [Crossref] [PubMed] [PMC]

11. Paerl, H.W. and Paul, V.J. (2012) Climate change: Links to global expansion of harmful cyanobacteria. Water Res., 46(5): 1349-1363. [Crossref] [PubMed]

12. Zakaria, A.M., El-Sharouny, H.M. and Ali, W.S.M. (2006) Microcystin production in benthic mats of Cyanobacteria in the Nile River and irrigation canals, Egypt. Toxicon., 47: 584-590. [Crossref] [PubMed]

13. El-Sheekh, M.M., Khairy, H.M. and El-Shenody, R.A. (2010) Allelopathic effects of the cyanobacterium Microcystis aeruginosa Kutzing on the growth and photosynthetic pigments of some algal species. Allelo J., 26: 275-290.

14. Fischer, W.J. and Dietrich, D.R. (2000) Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicol. Appl. Pharmacol., 164: 73-81. [Crossref] [PubMed]

15. Kanchana, M.P., Srisudha, S. and Gunasekaran, P. (2012) Toxicological evaluation of Cyanobacterium anabeanopsis abijatae in tilapia (Oreochromis mossambicus). Int. J. Curr. Res., 4(5): 42-46.

16. Sanad, S.M., Al-Gamaal, M.A. and Hemmaid, D.K. (2015) Histopathological Changes in the Liver of the Nile Fish Oreochromis niloticus Fed on the Blue-Green Algae Microcystis aeruginosa Under Laboratory Conditions. International Conference on Biological, Civil and Environmental Engineering (BCEE-2015), Bali (Indonesia).

17. Pichardo, S., Jos, A., Zurita, J.L., Salguero, M., Camean, A.M. and Repetto, G. (2007) Acute and sub-acute toxic effects produced by microcystin-YR on the fish cell lines RTG-2 and PLHC-1. Toxicol. In Vitro, 21: 1460-1467. [Crossref] [PubMed]

18. Jos, A., Pichardo, S., Prieto, A.I., Repetto, G., Vazquez, C.M., Moreno, I. and Camean, A.M. (2006) Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquat Toxicol., 72: 261-271. [Crossref] [PubMed]

19. Prieto, A.I., Pichardo, S., Jos, A., Moreno, I. and Camean, A.M. (2007) Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions. Aquat Toxicol., 84: 337-345. [Crossref]

20. Al-Kahtani, M.A. and Fathi, A.A. (2008) Physiological studies on tilapia fish (Oreochromis niloticus) as influenced by the cyanobacterial toxins microcystins. J. Biol. Sci., 8(7): 1226-1230. [Crossref]

21. Wiegand, C., Pflugmacher, S., Oberemm, A., Meems, N., Beattie, K.A., Steinberg, C.E.W. and Codd, G.A. (1999) Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ. Toxicol., 14(1): 89-95. [Crossref]

22. Moreno, I.M., Maraver, J., Aguete, E.C., Leao, M., Gago-Martinez, A. and Camean, A.M. (2004) Decomposition of microcystin-LR, microcystin-RR, and microcystin-YR in water samples submitted to in vitro dissolution tests. J. Agric. Food Chem., 52: 5933-5938. [Crossref] [PubMed]

23. Ibrahem, M.D., Khairy, H.M. and Ibrahim, M.A. (2012) Laboratory exposure of Oreochromis niloticus to crude microcystins (containing microcystin-LR) extracted from Egyptian locally isolated strain (Microcystis aeruginosa Kutzing): Biological and biochemical studies. Fish Physiol. Biochem., 38: 899-908. [Crossref]

24. Gupta, U.S. and Guha, S. (2006) Microcystin toxicity in a freshwater fish, Heteropneustes fossilis (Bloch). Curr. Sci., 91(9): 1261-1270.

25. Pedroso, G.L., Hammes, T.O., Escobar, T.D., Fracasso, L.B., Forgiarini, L.F. and da Silveira, T.R. (2012) Blood collection for biochemical analysis in adult zebrafish. J. Vis. Exp., (63): e3865. [Crossref]

26. Zang, L., Shimada, Y., Nishimura, Y., Tanaka, T. and Nishimura, N. (2013) A novel, reliable method for repeated blood collection from aquarium fish. Zebrafish, 10(3): 425-432. [Crossref] [PubMed]

27. Abdel-Latif, H.M.R. and El-Euony, O.I. (2016) Effects of rotenone on liver functions, antioxidants and lipid peroxidation of Nile tilapia fingerlings. Alex. J. Vet. Sci., 51(1): 186-193. [Crossref]

28. Vasylkiva, O.Y., Kubraka, O.I., Storeyb, K.B. and Lushchaka, V.I. (2011) Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pestic. Biochem. Physiol., 101(1): 1-5. [Crossref]

29. Branco, V., CanPERL, J., Lu, J., Holmgren, A. and Carvalho, C. (2012) Mercury and selenium interaction in vivo: Effects on thioredoxin reductase and glutathione peroxidase. Free Radic. Biol. Med., 52(4): 781-793. [Crossref] [PubMed]

30. Zhu, Y., Chen, Y., Liu, Y., Yang, H., Liang, G. and Tian, L. (2012) Effect of dietary selenium level on growth performance, body composition and hepatic glutathione peroxidase activities of largemouth bass Micropterus salmoide. Aquac. Res., 43(11): 1660-1668. [Crossref]

31. Srikanth, K., Pereira, E., Duarte, A.C. and Ahmad, I. (2013) Glutathione and its dependent enzymeshmad, I. (2013) (2013) composition and hepatic glutathiofish-a review. Environ. Sci. Pollut. Res., 20(4): 2133-2149. [Crossref] [PubMed]

32. Reddy, P.B. and Rawat, S.S. (2013) Assessment of aquatic pollution using histopathology in fish as a protocol. Int. Res. J. Environ. Sci., 2(8): 79-82.

33. SAS Statistical Analysis System. (1987) User's Guide Statistics. SAS Institute Cary, North Carolina.

34. Mohamed, Z.A., Carmichael, W.W. and Hussein, A.A. (2003) Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ. Toxicol., 18: 137-141. [Crossref] [PubMed]

35. Li, X., Xie, P. and Chen, J. (2005) In vivo studies on toxin accumulation in liver and ultrastructural changes of hepatocytes of the phytoplanktivorous Bighead carp I.P. Injected with extracted microcystins. Toxicon, 46: 533-545. [Crossref] [PubMed]

36. Cazenave, J., Bistoni, M.A., Pesce, S.F. and Wunderlin, D.A. (2006) Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat. Toxicol., 76: 1-12. [Crossref] [PubMed]

37. Prieto, A.I., Jos, A., Pichardo, S., Moreno, I.M. and Camean, A.M. (2006) Differential oxidative stress responses to microcystins LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.). Aquat. Toxicol., 77: 314-321. [Crossref] [PubMed]

38. Rabergh, C.M.I., Bylund, G. and Eriksson, J.E. (1991) Histopathological effects of microcystin-LR, a cyclic peptide toxin from the cyanobacterium (blue-green algae) Microcystis aeruginosa, on common carp (Cyprinus carpio L.). Aquat. Toxicol., 20: 131-146. [Crossref]

39. Kotak, B.G., Semalulu, S., Fritz, D.L., Prepas, E.E., Hrudey, S.E. and Coppock, R.W. (1996) Hepatic and renal pathology of intraperitoneally administered microcystin-LR in rainbow trout (Oncorhyncus mykiss). Toxicon, 34: 517-525. [Crossref]

40. Molina, R., Moreno, I., Pichardo, S., Jos, A., Moyano, R. and Monterde, J.G. (2005) Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon, 46: 725-735. [Crossref] [PubMed]

41. Best, J.H., Eddy, F.B. and Codd, G.A. (2001) Effects of purified microcystin-LR and cell extracts of Microcistis strains PCC 7813 and CYA 43 on cardiac function in brown trout (Salmo trutta) alevine. Fish Physiol. Biochem., 24: 171-178. [Crossref]

42. Liu, Y., Song, L., Li, X. and Liu, T. (2002) The toxic effects of microcystin-LR on embryo-larval and juvenile development of loach, Misguruns mizolepis Gunthe. Toxicon, 40: 395-399. [Crossref]

43. Carbis, C.R., Rawlin, G.T., Mitchell, G.F., Anderson, J.W. and McCauley, I. (1996) The histopathology of carp, Cyprinus carpio L., exposed to microcystins by gavage, immersion and intraperitoneal administration. J. Fish Dis., 19: 199-207. [Crossref]

44. Soares, R.M., Magalhaes, V.F. and Azevedo, S. (2004) Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquat. Toxicol., 70: 1-10. [Crossref] [PubMed]

45. Zhao, M., Xie, S., Zhu, X., Yang, Y., Gan, N. and Song, L. (2006) Effect of dietary cyanobacteria on growth and accumulation of microcystins in Nile tilapia (Oreochromis niloticus). Aquaculture, 261: 960-966. [Crossref]

46. Amrani, A., Nasri, H., Azzouz, A., Kadi, Y. and Bouaicha, N. (2014) Variation in cyanobacterial hepatotoxin (microcystin) content of water samples and two species of fishes collected from a shallow lake in Algeria. Arch. Environ. Contam. Toxicol., 66(3): 379-389. [Crossref] [PubMed]

47. Snyder, S., Goodwin, A. and Freeman, D. (2002) Evidence that channel catfish Ictalurus punctatus mortality is not linked to ingestion of the hepatoxin microcystin-LR. J. Fish Dis., 25: 275-278. [Crossref]

48. Li, X., Liu, Y., Song, L. and Liu, J. (2003) Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon, 42: 85-89. [Crossref]

49. Atencio, L., Moreno, I., Jos, A., Pichardo, S., Moyano, R., Blanco, A. and Camean, A. (2008) Dose-dependent antioxidant responses and pathological changes in tenca (Tinca tinca) after acute oral exposure to Microcystis under laboratory conditions. Toxicon, 52: 1-12. [Crossref] [PubMed]

50. Mitsoura, A., Kagalou, I., Papaioannou, N., Berillis, P., Mente, E. and Papadimitriou, T. (2013) The presence of microcystins in fish Cyprinus carpio tissues: A histopathological study. Int. Aquat. Res., 5: 8. [Crossref]

51. Channa, A. and Mir, I.H. (2009) Distribution of neutral lipids in the intestinal tract and liver of Schizothorax curvifrons Heckel: A histochemical study. Indian J. Appl. Pure Biol., 24: 285-288.

52. Chen, J., Xie, P., Zhang, D., Ke, Z. and Yang, H. (2006) In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp (Hypophthalmichthys molitrix) stocked in Lake Taihu with dense toxic Microcystis bloom. Aquaculture, 261: 1026-1038. [Crossref]

53. Kopp, R. and Hetesa, J. (2000) Changes of haematological indices of juvenile carp (Cyprinus carpio L.) under the influence of natural populations of cyanobacterial water blooms. Acta. Vet. Brno., 69: 131-137. [Crossref]

54. Vajcova, V., Mavratil, S. and Palikova, M. (1998) The effect of intraperitoneally applied pure microcystin LR on haematological, biochemical and morphological indices of silver carp (Hypophthalmichthys molitrix Val.). Acta. Vet. Brno., 67: 281-287. [Crossref]

55. Huang, C.H., Chang, R.J., Huang, S.L. and Chen, W. (2003) Dietary vitamin E supplementation affects tissue lipid peroxidation of hybrid tilapia, Oreochromis niloticus x O. aureus. Comp. Biochem. Physiol. B, 134: 265-270. [Crossref]