Open Access
Research (Published online: 16-07-2017)
13. Alterations in lipid profile in neonatal calves affected by diarrhea
K. Bozukluhan, O. Merhan, H. I. Gokce, H. A. Deveci, G. Gokce, M. Ogun and S. Marasli
Veterinary World, 10(7): 786-789

K. Bozukluhan: Kars School of Higher Vocational Education, University of Kafkas, Kars, Turkey.
O. Merhan: Department of Biochemistry, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey.
H. I. Gokce: Department of Internal Medicine, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy, Burdur, Turkey.
H. A. Deveci: Islahiye School of Higher Vocational Education, University of Gaziantep, Gaziantep, Turkey.
G. Gokce: Department of Internal Medicine, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey.
M. Ogun: Department of Biochemistry, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey.
S. Marasli: Department of Biochemistry, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey.

doi: 10.14202/vetworld.2017.786-789

Share this article on [Facebook] [LinkedIn]

Article history: Received: 16-03-2017, Accepted: 05-06-2017, Published online: 16-07-2017

Corresponding author: K. Bozukluhan

E-mail: kbozukluhan@hotmail.com

Citation: Bozukluhan K, Merhan O, Gokce HI, Deveci HA, Gokce G, Ogun M, Marasli S (2017) Alterations in lipid profile in neonatal calves affected by diarrhea, Veterinary World, 10(7): 786-789.
Abstract

Aim: The aim of this study was to determine the alterations in the lipid profile, plasma alkaline phosphatase (ALP) activity, total and direct bilirubin levels of neonatal calves with diarrhea.

Materials and Methods: A total of 25 calves with diarrhea as experimental group and 10 healthy calves as control group, 1-30 days old, were enrolled in the study. Blood samples were collected from jugular vein in tubes with anticoagulant agent to evaluate the concentration of triglycerides, total cholesterol, high-density lipoprotein-cholesterol (HDL-C), ALP, total and direct bilirubin. Very low-density lipoprotein-cholesterol (VLDL-C) and low-density lipoprotein-cholesterol (LDL-C) levels were calculated according to the Friedewald formula.

Results: Significant increases in the plasma levels of ALP (p<0.05), total and direct bilirubin, triglycerides, and VLDL-C (p<0.01) were determined, whereas significant decreases in the levels of total cholesterol, HDL-C and LDL-C (p<0.01) were observed in neonatal calves with diarrhea.

Conclusion: According to the findings of this study, liver functions impaired and, therefore, lipid profile is affected negatively in neonatal calves with diarrhea.

Keywords: calves, cholesterol, diarrhea, high-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol, triglycerides.

References

1. Arfuso, F., Fazio, F., Panzera, M., Giannetto, C., di Pietro, S., Giudice, E. and Piccione, G. (2017) Lipid and lipoprotein profile changes in newborn calves in response to the perinatal period. Acta Vet. Beograd., 67: 25-32. [Crossref]

2. Piccione, G., Casella, S., Pennisi, P., Giannetto, C., Costa, A. and Caola, G. (2010) Monitoring of physiological and blood parameters during perinatal and neonatal period in calves. Arq. Bras. Med. Vet. Zootec., 62: 1-12. [Crossref]

3. Foster, D.M. and Smith, G.W. (2009) Pathophysiology of diarrhea in calves. Vet. Clin. N. Am. Food Anim. Pract., 25: 13-36. [Crossref] [PubMed]

4. Cho, Y. and Yoon, K.J. (2014) An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Vet. Sci., 15: 1-17. [Crossref] [PubMed] [PMC]

5. Meganck, V., Hoflack, G. and Opsomer, G. (2014) Advances in prevention and therapy of neonatal dairy calf diarrhea: A systematical review with emphasis on colostrum management and fluid therapy. Acta Vet. Scand., 56: 1-8. [Crossref] [PubMed] [PMC]

6. Asadi, A.H., Baghinezhad, M. and Asadi, H. (2015) Neonatal calf diarrhea induced by rotavirus and coronavirus: A review. Int. J. Biosci., 6: 230-236. [Crossref]

7. Rocha, T.G., Nociti, R.P., Sampaio, A.A.M. and Fagliari, J.J. (2012) Passive immunity transfer and serum constituents of crossbred calves. Pesqui. Vet. Bras., 32: 515-522. [Crossref]

8. House, A.M., Irsik, M. and Shearer, J.K. (2008) Sepsis, Failure of Passive Transfer, and Fluid Therapy in Calves. Veterinary Medicine-Large Animal Clinical Sciences Department publications. p1-5. Available from: http://www.calfology.com. Accessed on 24-05-2017.

9. Poulsen, K.P., Foley, A.L., Collins, M.T. and McGuirk, S.M. (2010) Comparison of passive transfer of immunity in neonatal dairy calves fed colostrum or bovine serum-based colostrum replacement and colostrum supplement products. J. Am. Vet. Med. Assoc., 237: 949-954. [Crossref]

10. Sen, I. and Constable, P.D. (2013) General overview to treatment of strong ion (metabolic) acidosis in neonatal calves with diarrhea. Eur. J. Vet. Sci., 29: 114-120.

11. Constable, P.D., Hinchcliff, K.W., Done, S.H. and Grunberg, W. (2017) Neonatal infection disease. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goats. 11th ed. Elsevier, China. p1874-1903.

12. Nassaji, M. and Ghorbani, R. (2012) Plasma lipid levels in patients with acute bacterial infections. Turk. J. Med. Sci., 42: 465-469.

13. Itoh, H., Tamura, K., Motoi, Y. and Kawawa, F. (1997) Serum apolipoprotein B-100 concentrations in healthy and diseased cattle. J. Vet. Med. Sci., 59: 587-591. [Crossref] [PubMed]

14. Enjoji, M., Kohjima, M. and Nakamuta, M. (2016) Lipid metabolism and the liver. In: Ohira, H., editor. The Liver in Systemic Diseases. Online E-Book, Springer, Japan. p105-122. [Crossref]

15. Kaneko, J.J., Harvey, J.W. and Bruss, M.L. (2008) Clinical Biochemistry of Domestic Animals. 6th ed. Academic Press, New York. p364-390.

16. Carpentier, Y.A. and Scruel, O. (2002) Changes in the concentration and composition of plasma lipoproteins during the acute phase response. Curr. Opin. Clin. Nutr. Metab. Care, 5: 153-158. [Crossref] [PubMed]

17. Tall, A.R. and Yvan-Charvet, L. (2015) Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol., 15: 104-116. [Crossref] [PubMed] [PMC]

18. Khovidhunkit, W., Kim, M.S., Memon, R.A., Shigenaga, J.K., Moser, A.H., Feingold, K.R. and Grunfeld, C. (2004) Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanism and consequences to the host. J. Lipids Res., 45: 1169-1196. [Crossref] [PubMed]

19. Ramachandran, G. (2014) Gram-positive and gram-negative bacterial toxins in sepsis. Virulence, 5: 213-218. [Crossref] [PubMed] [PMC]

20. Irmak, K. and Civelek, T. (2004) Sera nitric oxide (NO) concentrations in neonatal calves with presumed septic shock. Kafkas Univ. Vet. Med. J., 10: 65-67.

21. Rackow, E.C. and Astiz, M.E. (1991) Pathophysiology and treatment of septic shock. J. Am. Med. Assoc., 266: 548-554. [Crossref] [PubMed]

22. Irmak, K. and Guzelbektes, H. (2003) Alteration in some hematological and biochemical parameters in the calves with presumed septic shock. Kafkas Univ. Vet. Med. J., 9: 53-57.

23. Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 18: 499-502. [PubMed]

24. SPSS. (2011) IBM SPSS Statistics for Windows, Version 20.0. Armonk, New York.

25. Sobiech, P., Rekawek, W., Ali, M., Targonski, R., Zarczynska, K., Snarska, A. and Stopyra, A. (2013) Changes in blood acid-base balance parameters and coagulation profile during diarrhea in calves. Pol. J. Vet. Sci., 16: 543-549. [Crossref] [PubMed]

26. Baydar, E. and Kizil, O. (2012) Plasma lipid profile in the cows with pericarditis traumatica. Firat Univ. Vet. J. Health Sci., 26: 171-174.

27. Nanji, A.A., Jokelainen, K., Rahemtulla, A., Miao, L., Fogt, F., Matsumoto, H., Tahan, S.R. and Su, G.L. (1999) Activation of nuclear factor kappa B and cytokine imbalance in experimental alcoholic liver disease in the rat. Hepatology, 30: 934-943. [Crossref] [PubMed]

28. Feingold, K.R., Staprans, I., Memon, R.A., Moser, A.H., Shigenaga, J.K., Doerrler, W., Dinerallo, C.A. and Grunfeld, C. (1992) Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: Low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J. Lipids Res., 33: 1765-1776. [PubMed]

29. Khovidhunkit, W., Memon, R.A., Feingold, K.R. and Grunfeld, C. (2000) Infection and inflammation-induced proatherogenic changes of lipoproteins. J. Infect. Dis., 181 Supp 3: 462-472. [Crossref] [PubMed]

30. Akgun, S., Ertel, N.H., Mosenthal, A. and Oser, W. (1998) Postsurgical reduction of serum lipoproteins: Interleukin-6 and the acute-phase response. J. Lab. Clin. Med., 131: 103-108. [Crossref]

31. Feingold, K.R., Pollock, A.S., Moser, A.H., Shigenaga, J.K. and Grunfeld, C. (1995) Discordant regulation of proteins of cholesterol metabolism during the acute phase response. J. Lipids Res., 36: 1474-1482. [PubMed]

32. Ly, H., Francone, O.L., Fielding, C.J., Shigenaga, J.K., Moser, A.H., Grunfeld, C. and Feingold, K.R. (1995) Endotoxin and TNF lead to reduced plasma LCAT activity and decreased hepatic LCAT mRNA levels in Syrian hamsters. J. Lipids Res., 36: 1254-1263. [PubMed]

33. Albayrak, H. and Kabu, M. (2016) Determining serum haptoglobin and cytokine concentrations in diarrheic calves. Firat Univ. Vet. J. Health Sci., 30: 113-117.

34. Razavi, S.M., Nazifi, S., Rakhshandehroo, E., Firoozi, P. and Farsandaj, M. (2012) Erythrocyte antioxidant systems, lipid peroxidation and circulating lipid profiles in cattle naturally infected with Theileria annulata. Rev. Med. Vet., 163: 18-24.

35. Russell, K.E. and Roussel, A.J. (2007) Evaluation of the ruminant serum chemistry profile. Vet. Clin. Food Anim., 23: 403-426. [Crossref] [PubMed]

36. Baser, D.F. and Civelek, T. (2013) Correlations between venous acid-base status and renal function in neonatal calves with acute diarrhea. Kocatepe Vet. J., 6: 25-31. [Crossref]

37. Merhan, O., Bozukluhan, K., Gokce, G. and Yilmaz, O. (2016) Investigation on the levels of haptoglobin, ceruloplasmin and some biochemical parameters levels in calves with diarrhea. Firat Univ. Vet. J. Health Sci., 30: 195-198.