doi: 10.14202/vetworld.2017.1167-1172
Share this article on [Facebook] [LinkedIn]
Article history: Received: 04-05-2017, Accepted: 29-08-2017, Published online: 03-10-2017
Corresponding author: Amal Awad
E-mail: amalabdo@mans.edu.eg
Citation: Younis G, Awad A, Mohamed N (2017) Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens, Veterinary World, 10(10): 1167-1172.Aim: Avian pathogenic Escherichia coli (APEC) is pathogenic strains of E. coli that are responsible for one of the most common bacterial diseases affecting poultry worldwide. This study was designed to determine the occurrence, antibiotic resistance profile, and antibiotic resistance genes of E. coli isolated from diseased and freshly dead broilers.
Materials and Methods: In that context, a total of 200 broilers samples were examined by standard microbiological techniques for isolation of E. coli, and tested for their antimicrobial susceptibility against 15 antimicrobial agents using disc diffusion method. In addition, E. coli isolates were screened by multiplex polymerase chain reaction for detection of a number of resistance genes including aadA1 gene encodes streptomycin/neomycin, tetA encodes resistance to tetracycline, sul1 encodes sulfonamides, and β-lactamase encoding genes (blaTEM and blaSHV).
Results: A total of 73 (36.5%) isolates were biochemically identified as E. coli strains. O78, O2, and O1 are the most prevalent serotypes detected. E. coli displayed a high resistance against penicillin (100%), followed by cefepime (95.8%) and a low resistance to norfloxacin (36.9%), and chloramphenicol (30%). Depending on the results of PCR, sul1 gene was the most predominant antibiotic resistant gene (87%) followed by blaTEM (78%), tetA genes (60%), and aadA (54%). However, blaSHV had the lowest prevalence (23%).
Conclusion: The obtained results demonstrated the importance of studies on APEC and antibiotic resistance genes in our region which associated with intensive poultry industry, aiming to acquire preventive measures to minimize losses due to APEC and associated multidrug-resistance and resistance genes that of high significance to the rational use of antibiotics in clinical and public health.
Keywords: antimicrobial resistance, broilers, Escherichia coli, multiplex polymerase chain reaction, resistant genes.
1. Matthijs, M.G., Ariaans, M.P., Dwars, R.M., van Eck, J.H., Bouma, A., Stegeman, A. and Vervelde, L. (2009) Course of infection and immune responses in the respiratory tract of IBV infected broilers after superinfection with E. coli. Vet. Immunol. Immunopathol., 127(1): 77-84. [Crossref] [PubMed]
2. Schouler, C., Schaeffer, B., Bree, A., Mora, A., Dahbi, G., Biet, F., Oswald, E., Mainil, J., Blanco, J. and Moulin-Schouleur, M. (2012) Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J. Clin. Microbiol., 50(5): 1673-1678. [Crossref] [PubMed] [PMC]
3. Mellata, M. (2013) Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis., 10: 916-932. [Crossref] [PubMed] [PMC]
4. McKellar, Q.A., Sanchez-Bruni, S.F. and Jones, D.G. (2004) Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine. J. Vet. Pharmacol. Ther., 27(6): 503-514. [Crossref] [PubMed]
5. Spellberg, B. (2014) The future of antibiotics. Crit. Care, 18(3): 228. [Crossref]
6. Spellberg, B. and Gilbert, D.N. (2014) The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. Clin. Infect. Dis., 59 Suppl 2: S71-S75. [Crossref]
7. Ma, J., Liu, J.H., Luchao, L., Zong, Z., Sun, Y., Zheng, H., Chen, Z. and Zeng, Z.L. (2012) Characterization of extended-spectrum β-lactamase genes found among Escherichia coli isolates from duck and environmental samples obtained on a duck farm. Appl. Environ. Microbial., 76(10): 3668-3673. [Crossref] [PubMed] [PMC]
8. Collignon, P., Wegener, H.C., Braam, P. and Butler, C.D. (2005) The routine use of antibiotics to promote animal growth does little to benefit protein undernutrition in the developing world. Clin. Infect. Dis., 41: 1007-1013. [Crossref] [PubMed]
9. Ewing, W.H. (1986) Identification of Enterobacteriaceae by biochemical reactions. In: Edwards and Ewing's Identification of Enterobacteriaceae. Elsevier Science Publishing Co. Inc., New York. NY. p47-72.
10. Kok, T., Worswich, D. and Gowans, E. (1996) Some serological techniques for microbial and viral infections. In: Collee, J., Fraser, A., Marmion, B. and Simmons, A., editors. Practical Medical Microbiology. 14th ed. Churchill Livingstone, Edinburgh, UK.
11. CLSI. (2011) Performance Standards for Antimicrobial Susceptibility Testing, Twenty-First Informational Supplement. Vol. 31. Clinical and Laboratory Standards Institute M02-A10 and M07-A08, Wayne, PA.
12. Ramadan, H., Awad, A. and Ateya, A. (2016) Detection of phenotypes, virulence genes and phylotypes of avian pathogenic and human diarrheagenic Escherichia coli in Egypt. J. Infect. Dev. Ctries., 10(6): 584-591. [Crossref] [PubMed]
13. Colom, K., Perez, J., Alonso, R., Fernandez-Aranguiz, A., Larino, E. and Cisterna, R. (2003) Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbial., 2: 147-51. [Crossref]
14. Randall, L.P., Cooles, S.W., Osborn, M.K., Piddock, L.J.V. and Woodward, M.J. (2004) Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother., 53: 208-216. [Crossref]
15. Bekwe, A.M., Murinda, S.E. and Graves, A.K. (2011) Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS One, 6(6): e20819. [Crossref] [PubMed] [PMC]
16. Walker, R.A., Lindsay, E., Woodward, M.J., Ward, L.R. and Threlfall, E.J. (2001) Variation in clonality and antibiotic-resistance genes among multi-resistant Salmonella enterica serotype Typhimurium phage-type U302 (MR U302) from humans, animals, and foods. Microbiol. Res., 7: 13-21.
17. Momtaz, H. and Jamshidi, A. (2013) Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: Serogroups, virulence factors, and antimicrobial resistance properties. Poult. Sci., 92(5): 1305-1313. [Crossref] [PubMed]
18. Kilic, A., Ertas, H.B., Muz, A., Ozbey, G. and Kalender, H. (2007) Detection of the eaeA gene in Escherichia coli from chickens by polymerase chain reaction. Turk. J. Vet. Anim. Sci., 31(4): 215-218.
19. Ammar, A.M., El-Hamid, M.I., Eid, S.E.A. and El Oksh, A.S. (2015) Insight into antimicrobial resistance and virulence genes of emergent multidrug resistant avian pathogenic Escherichia coli in Egypt: How closely related are they? Rev. Med. Vet., 166(9-10): 304-314.
20. Gross, W.G. (1994) Diseases due to Escherichia coli in poultry. In: Gylcs, C.L., editor. Domestic Animals and Man. CAB International, Wallingford, UK. p237-259.
21. Sojka, W.J. and Carnaghan, R.B.A. (1961) Escherichia coli infection in poultry. Res. Vet. Sci., 2: 340-352.
22. Ewers, C., Janben, T., Kiebling, S., Philipp, H.C. and Wieler, L.H. (2004) Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microb., 104(1): 91-101. [Crossref] [PubMed]
23. El-Seedy, F.R., Hassan, W.H., Salama, S.S. and Gamal, F. (2011) Optimization of polymerase chain reaction for direct detection of colibacillosis in infected chickens. Vet. Med. J. Giza, 59(2): 307-318.
24. Reda, M.L. (2013) Studies on antibiotic resistance of Escherichia coli isolated from poultry and children. Suez Canal Vet. Med. J., 18(2), 27-40.
25. Szmolka, A. and Nagy, B. (2013) Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol., 4: 258-270. [Crossref] [PubMed] [PMC]
26. Awad, A., Arafat, N. and Elhadidy, M. (2016) Genetic elements associated with antimicrobial resistance among avian pathogenic E. Coli. Ann. Clin. Microbiol. Antimicrob., 15(1): 59. [Crossref] [PubMed] [PMC]
27. Yang, H., Chen, S., White, D.G., Zhao, S., McDermott, P., Walker, R. and Meng, J. (2004) Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J. Clin. Microbiol., 42(8): 3483-3489. [Crossref] [PubMed] [PMC]
28. Johnson, T.J., Siek, K.E., Johnson, S.J. and Nolan, L.K. (2005) DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. Antimicrob. Agents Chemother., 49(11): 4681-4688. [Crossref] [PubMed] [PMC]
29. Kim, T.E., Jeong, Y.W., Cho, S.H., Kim, S.J. and Kwon, H.J. (2007) Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates. J. Clin. Microbial., 45(10): 3309-3315. [Crossref] [PubMed] [PMC]
30. Randall, L.P., Clouting, C., Horton, R.A., Coldham, N.G., Wu, G., Clifton-Hadley, F.A. and Teale, C.J. (2010) Prevalence of Escherichia coli carrying extended-spectrum β-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J. Antimicrob. Chemother., 66(1): 86-95. [Crossref] [PubMed]
31. Obeng, A.S., Rickard, H., Ndi, O., Sexton, M. and Barton, M. (2012) Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Vet. Microbiol., 154(3): 305-315. [Crossref] [PubMed]
32. Mohamed, M.A., Shehata, M.A. and Rafeek, E. (2014) Virulence genes content and antimicrobial resistance in Escherichia coli from broiler chickens. Hindawi Publ. Corp. Vet. Med. Int., 2014: Article ID: 195189, 6.
33. Ahmed, A.M. and Shimamoto, T. (2013) Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Int. J. Med. Microbiol., 303: 475-483. [Crossref] [PubMed]
34. Mosquito, S., Ruiz, J., Pons, M.J., Durand, D., Barletta, F. and Ochoa, T.J. (2012) Molecular mechanisms of antibiotic resistance in diarrhoeagenic Escherichia coli isolated from children. Int. J. Antimicrob. Agents, 40: 544-548. [Crossref] [PubMed] [PMC]
35. Liu, X.Q., Boothe, D.M., Thungrat, K. and Aly, S. (2012) Mechanisms accounting for fluoroquinolone multidrug resistance Escherichia coli isolated from companion animals. Vet. Microbiol., 161(1-2): 159-168. [Crossref] [PubMed]
36. Ali, M.S. (2009) Studies on Enteropathogenic Escherichia coli from Different Sources, M.V.SC. Thesis (Bacteriology, Mycology and Immunology), Faculty of Veterinary Medicine, Zagazig University.
37. Eid, S.E.A. and Erfan, A.M. (2013) Characterization of E. coli associated with high mortality of poultry flocks. Assiut Vet. Med. J., 59: 51-61.
38. Manges, A.R., Smith, S.P., Lau, B.J., Nuval, C.J., Eisenberg, J.N., Dietrich, P.S. and Riley, L.W. (2007) Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: A case-control study. Foodborne Pathog. Dis., 4(4): 419-431. [Crossref] [PubMed]
39. Paterson, D.L. and Bonomo, R.A. (2005) Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev., 18(4): 657-686. [Crossref] [PubMed] [PMC]