Open Access
Research (Published online: 19-09-2017)
12. Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates
Waleed S. Shell, Mahmoud Lotfy Sayed, Fatma Mohamed Gad Allah, Fatma Elzahraa Gamal, Afaf Ahmed Khedr, A. A. Samy and Abde Hakam M. Ali
Veterinary World, 10(9): 1083-1093

Waleed S. Shell: Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt.
Mahmoud Lotfy Sayed: Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt.
Fatma Mohamed Gad Allah: Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt.
Fatma Elzahraa Gamal: Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt.
Afaf Ahmed Khedr: Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt.
A. A. Samy: Department of Microbiology and Immunology, National Research Center, Cairo, Egypt.
Abde Hakam M. Ali: Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt.

doi: 10.14202/vetworld.2017.1083-1093

Share this article on [Facebook] [LinkedIn]

Article history: Received: 20-01-2017, Accepted: 10-08-2017, Published online: 19-09-2017

Corresponding author: Waleed S. Shell

E-mail: tarikwaleedshell@hotmail.com

Citation: Shell WS, Sayed ML, Allah FMG, Gamal FE, Khedr AA, Samy AA, Ali AHM (2017) Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates, Veterinary World, 10(9): 1083-1093.
Abstract

Aim: Identification of pathogenic clinical bacterial isolates is mainly dependent on phenotypic and genotypic characteristics of the microorganisms. These conventional methods are costive, time-consuming, and need special skills and training. An alternative, mass spectral (proteomics) analysis method for identification of clinical bacterial isolates has been recognized as a rapid, reliable, and economical method for identification. This study was aimed to evaluate and compare the performance, sensitivity and reliability of traditional bacteriology, phenotypic methods and matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in the identification of clinical Escherichia coli and Salmonella isolates recovered from chickens.

Materials and Methods: A total of 110 samples (cloacal, liver, spleen, and/or gall bladder) were collected from apparently healthy and diseased chickens showing clinical signs as white chalky diarrhea, pasty vent, and decrease egg production as well as freshly dead chickens which showing postmortem lesions as enlarged liver with congestion and enlarged gall bladder from different poultry farms.

Results: Depending on colonial characteristics and morphological characteristics, E. coli and Salmonella isolates were recovered and detected in only 42 and 35 samples, respectively. Biochemical identification using API 20E identification system revealed that the suspected E. coli isolates were 33 out of 42 of colonial and morphological identified E. coli isolates where Salmonella isolates were represented by 26 out of 35 of colonial and morphological identified Salmonella isolates. Serological identification of isolates revealed that the most predominant E. coli serotypes were O1 and O78 while the most predominant Salmonella serotype of Salmonella was Salmonella Pullorum. All E. coli and Salmonella isolates were examined using MALDI-TOF MS. In agreement with traditional identification, MADI-TOF MS identified all clinical bacterial samples with valid scores as E. coli and Salmonella isolates except two E. coli isolates recovered from apparently healthy and diseased birds, respectively, with recovery rate of 93.9% and 2 Salmonella isolates recovered from apparently healthy and dead birds, respectively, with recovery rate of 92.3%.

Conclusion: Our study demonstrated that Bruker MALDI-TOF MS Biotyper is a reliable rapid and economic tool for the identification of Gram-negative bacteria especially E. coli and Salmonella which could be used as an alternative diagnostic tool for routine identification and differentiation of clinical isolates in the bacteriological laboratory. MALDI-TOF MS need more validation and verification and more study on the performance of direct colony and extraction methods to detect the most sensitive one and also need using more samples to detect sensitivity, reliability, and performance of this type of bacterial identification.

Keywords: ABI, Bruker Daltonics, colibacillosis, Escherichia coli, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Salmonella, Salmonella pullorum.

References

1. Jordan, F.T., Williams, N.J., Wattret, A. and Jones, T. (2005) Observations on salpingitis, peritonitis and salpingoperitonitis in a layer breeder ?ock. Vet. Rec., 157: 573-577. [Crossref] [PubMed]

2. Sun, H., Liu, P., Nolan, L.K. and Lamont, S.J. (2016) Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection. Poult. Sci., 95(12): 2803-2814. [Crossref] [PubMed] [PMC]

3. da Silveira, W.D., Ferreira, A., Brocchi, M., de Hollanda, L.M., de Castro, A.P., Yamada, A.T. and Lancellotti, M. (2002) Biological characteristics and pathogenicity of avian Escherichia coli strains. Vet. Microbiol., 85: 4753. [Crossref]

4. Glisson, J.R., Hofacre, C.L. and Christensen, J.P. (2008) Fowl cholera. In: Saif, Y.M., Barnes, H.J., Glisson, J.R., Fadly, A.M, McDougald, L.R. and Swayne, D.E., editors. Diseases of Poultry. 12th ed. Blackwell Publishing, Ames, IA. p739-758.

5. Teferi, M. and Nejash, A. (2016) Epidemiology and economic importance of pullorum disease in poultry: A review. Glob. Vet., 17(3): 228-237.

6. Endris, M., Taddesse, F., Geloye, M., Degefa, T. and Jibat, T. (2013) Sero and media culture prevalence of salmonellosis in local and exotic chicken, Debre Zeit, Ethiopia. Afr. J. Microbiol. Res., 7(12): 1041-1044.

7. Bidhendi, M., Khaki, P. and Cheraghchi, N. (2015) Study on phenotypic characteristics of Salmonella gallinarum and Sallmonella pullorum isolates based on biochemical and antimicrobial susceptibility tests in Iran. Arch. Razi Inst., 70: 171-177.

8. Singhal, N., Kumar, M.P.K. and Virdi, J.S. (2015) MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol., 6: 791. [Crossref]

9. Schulthess, B., Brodner, K., Bloemberg, G.V., Zbinden, R., Bottger, E.C. and Hombach, M. (2013) Identification of gram-positive cocci using MALDI-TOF MS: Comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. J. Clin. Microbiol., 51: 1834-1840. [Crossref] [PubMed] [PMC]

10. Panda, A., Kurapati, S., Samantaray, J.C., Myneedu, V.P., Verma, A. and Srinivasan, A. (2013) Rapid identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry. Indian J. Med. Microbiol., 31: 117-122. [PubMed]

11. Jennifer, M., Sebastien, R., Valerie, M., Victoria, G., Sandrine, A., Martin, W, David, O., Jean-Philippe, L. and Anne, K. (2016) A simple and safe protocol for preparing Brucella samples for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J. Clin. Microbiol., 54(2): 449-452. [Crossref] [PubMed] [PMC]

12. Blattel, V., Petri, A., Rabenstein, A., Kuever, J. and Konig, H. (2013) Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl. Microbiol. Biotechnol., 97: 4597-4606. [Crossref] [PubMed]

13. Lau, A.F., Drake, S.K., Calhoun, L.B., Henderson, C.M. and Zelazny, A.M. (2013) Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol., 51: 828-834. [Crossref]

14. Degand, N., Carbonnelle, E., Dauphin, B., Beretti, J.L., Le Bourgeois, M. and Sermet-Gaudelus, I. (2008) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J. Clin. Microbiol., 46: 3361-3367. [Crossref]

15. Ozbey, G. and Ertas, H.B. (2005) Salmonella spp. Isolation from chicken samples and identification by polymerase chain reaction. Bulg. J. Vet. Med., 9(1): 67-73.

16. Hossain, M.S., Chowdhury, E.H., Islam, M.M., Haider, M.G. and Hossain, M.M. (2006) Avian Salmonella infection: Isolation and identification of organisms and histopathological study. Bangladesh J. Vet. Med., 4(1): 7-12.

17. Zahraei, S.T., Mahzounieh, M. and Saeedzadeh, A. (2005) The isolation of antibiotic-resistant Salmonella from intestine and liver of poultry in Shiraz Province of Iran. Int. J. Poult. Sci., 4(5): 320-322. [Crossref]

18. Merchant, I.A. and Packer, R.A. (1967) Veterinary Bacteriology and Virology. 7th ed. The Iowa University Press, Ames, Iowa, USA. p286-306.

19. Abdel, H.M.A. (2007) Isolation, Identification and Characterization of Salmonella from Laying Farms. M. V. Sc. Thesis (Microbiology). Faculty of Veterinary Medicine, Cairo University.

20. Mohamed, Z.A. (1999) Identification and Classification of Salmonella Strains by the Use of Protein Profile Analysis, Antimicrobial Susceptibility and DNA Fingerprinting. Ph.D. Thesis (Microbiology), Veterinary Medicine, Cairo University.

21. Kauffmann, F. (1972) Serological Diagnosis of Salmonella Species. Kauffman White Sceme Minkagaard Copenhagen, Denmark.

22. Sojka, W.J. (1965) E. coli in Domestic Animals and Poultry. 1st ed. Commonwealth Agriculture, Bureau, Farnham, Royal Buck, England.

23. Edward, P.R. and Ewing, W.H. (1972) Edwards and Ewing's Identification of Enterobacteriacae. 3rd ed. Burgess, Minneapolis.

24. Sara, J.B., Steven, K.D., Andrasko, J.L., Christina, M.H., Kamal, K., Stella, A., Lilia, M., Patricia, C., Karen, M.F., Susan, M.H., Joan-Miquel, B. and Adrian, M.Z. (2016) Multi-center MALDI-TOF MS study for the identification of clinically-relevant Nocardia spp. J. Clin. Microbiol., 54: 1251-1258. [Crossref] [PubMed] [PMC]

25. Adnan, A.A., Scott, A.C., Sherry, M.I., Jayawant, M. and Robin, P. (2011) Comparison of direct colony method versus extraction method for identi?cation of gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol., 49(8): 2868-2873. [Crossref] [PubMed] [PMC]

26. Tripti, D., Reena, V. and Vijaylatha, R. (2016) Prevalence, bacteriology, pathogenesis and isolation of E. coli in sick layer chickens in Ajmer region of Rajasthan, India. Int J. Curr. Microbiol. Appl. Sci., 5(3): 129-136. [Crossref]

27. Melha, M. (2013) Human and Avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis., 10(11): 916-932. [Crossref] [PubMed] [PMC]

28. Noori, T.E. and Alwan, M.J. (2016) Isolation and Identification of zoonotic bacteria from poultry meat. Int. J. Adv. Res. Biol. Sci., 3(8): 57-66.

29. Antunes, P., Reu, C., Sousa, J.C., Peixe, L. and Pestana, N. (2003) Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. Int. J. Food Microbiol., 82: 97-103. [Crossref]

30. Kwon, S.G., Cha, S.Y., Choi, E.J., Kim, B., Song, H.J. and Jang, H.K. (2008) Epidemiological prevalence of avian pathogenic E. coli differentiated by multiplex PCR from commercial chickens and hatchery in Korea. J. Bacteriol. Virol., 38(4): 179-188. [Crossref]

31. Salama, S.S, Afaf, A.K., Elham, A.E. and Taha, M.M. (2007) Molecular strategies for the differentiation and identification of local E. coli isolated from chicken: I. Characterization of protein profile. B S Vet. Med. J., 17(1): 25-28.

32. Gross, W.B. (1994) Diseases due to Escherichia coli in poultry. In: Gyles, C.L., editor. Escherichia coli in Domestic Animals and Humans. CAB International Library, Wallingford, United Kingdom. p237-260.

33. Chart, H., Smith, H.R., La Ragione, R.M. and Woodward, M.J. (2000) An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5a, and EQ1. J. Appl. Microbiol., 89: 1048-1058. [Crossref] [PubMed]

34. Ibrahim, I.S. (1997) Prevalence of E. coli in Slaughtered Broilers and Their Products. Ph.D. Thesis (Meat Hygiene), Faculty of Veterinary Medicine, Cairo University.

35. McPeake, S.J.W., Smyth, J.A. and Ball, H.J. (2005) Characterization of avian pathogenic E. coli (APEC) associated with colicepticemia compared to fecal isolates from healthy birds. Vet. Microbiol., 110: 245-253. [Crossref] [PubMed]

36. Peighambari, S.M., Vaillancourt, J.P., Wilson, R.A. and Gyles, C.L. (1995) Characteristics of E. coli isolates from avian cellulites. Avian Dis., 39: 116-124. [Crossref] [PubMed]

37. Lafont, J.P., Dho, H., D'Hauteville, H.M., Bree, A. and Sansonetti, P.J. (1987) Presence and expression of aerobactin genes in virulent avian strains of E. coli. Infect. Immun., 55: 192-197.

38. Dho-Moulin, M., Vandenboseh, J.F., Girardeau, J.P., Bree, A., Barat, T. and Lafont, J.P. (1990) Surface antigens from E. coli O2, and O78 strains. Infect. Immun., 58: 740-745. [PubMed] [PMC]

39. Gross, W.B. (1991) Colibacillosis. Dis. Poult., 9: 138-144.

40. Cloud, S.S., Rosenberger, J.K., Fries, P.A., Wilson, R.A. and Odor, E.M. (1985) In vitro and in vivo characterization of avian E. coli serotypes, metabolic activity and antibiotic sensitivity. Avian Dis., 29: 1084-1093. [Crossref] [PubMed]

41. Orajaka, L.J.E. and Mohan, K. (1986) E. coli serotypes isolated from dead-in-shell embryos from Nigeria. Bull. Anim. Health Prod. Afr., 34: 139-141.

42. Hossain, M.T., Siddique, M.P., Hossain, F.M.A., Zinnah, M.A., Hossain, M.M., Alam, M.K., Rahman, M.T. and Choudhury, K.A. (2008) Isolation, identification, toxin profile and anti-biogram of E. coli isolated from broilers and layers in Mymensingh district of Bangladesh. Bangladesh J. Vet. Med., 6(1): 1-5.

43. Robab, R.T. and Azadeh, N. (2003) Isolation, identification and antimicrobial resistance patterns of E. coli isolated from chicken flock. Iran. J. Pharmacol. Ther., 2: 39-42.

44. Raji, M., Adekeye, J., Kwaga, J., Bale, J. and Henton, M. (2007) Serovars and biochemical characterization of Escherichia coli isolated from colibacillosis cases and dead-in-shell embryos in poultry in Zaria-Nigeria. Vet. Arh., 77(6): 495-505.

45. Kilic, A., Muz, A., Ertash, B. and Ozbey, G. (2009) Random amplified polymorphic DNA (RAPD) analysis of Escherichia coli isolated from chickens. Firat Univ. Saglik Bilimleri Vet. Derg., 23(1): 1-4.

46. Allan, B.J., van den Hurk, J.V. and Potter, A.A. (1993) Characterization of E. coli isolated from cases of Avian colibacillosis. Can. J. Vet. Res., 57(3): 146-151. [PubMed] [PMC]

47. Rosenberger, J.K., Fries, P.A., Cloud, S.S. and Wilson, R.A. (1985) In vitro and in vivo characterization of avian E. coli. Factors associated with pathogenicity. Avian Dis., 29: 1094-1107. [Crossref] [PubMed]

48. Blanco, J.E., Blanco, M., Mora, A. and Blanco, J. (1997b) Prevalence of bacterial resistence to quinolones and other antimicrobials among avian E. coli strains isolated from septicemic and healthy chickens in Spain. J. Clin. Microbiol., 35: 2184-2185. [PubMed] [PMC]

49. Moustafa, F.M. (1982) Microbiological and Serological Studies on Avian Salmonellosis. Ph.D. Thesis (Microbiology), Veterinary Medicine, Cairo University.

50. Bygrave, A.C. and Gallagher, J. (1989) Transmission of S. enteritidis in poultry. Vet. Rec., 124(21): 571-575. [Crossref]

51. Chaiba, A., Rhazi, F.F., Chahlaoui, A., Soulaymani, B.R. and Zerhouni, M. (2009) Prevalence and anti-microbial susceptibility of Salmonella isolates from chicken carcass and giblets in Meknes, Morocco. Afr. J. Microbiol. Res., 3(5): 215-219.

52. Ashutosh, P., Sravya, K., Jyotish, C.S., Alagiri, S. and Shehla, K. (2014) MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates. Indian J. Med. Res., 140: 770-777.

53. Mari, L.D. and Carey-Ann, D.B. (2014) Diafiltration MALDI-TOF mass spectrometry method for culture-independent detection and identification of pathogens directly from urine specimens. Am. J. Clin. Pathol., 141: 204-212. [Crossref] [PubMed]

54. Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E., Rolain, J.M. and Raoult, D. (2009) Ongoing revolution in bacteriology: Routine identi?cation of bacteria by matrix-assisted laser desorption ionization time-of-?ight mass spectrometry. Clin. Infect. Dis., 49: 543-551. [Crossref]

55. Belen, R., Maria, J.R., Mercedes, M., Paula, L.R., Marta, R.C. and Emilio, B. (2015) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identi?cation of nontuberculous mycobacteria from clinical isolates. J. Clin. Microbiol., 53(8): 2737-2740. [Crossref] [PubMed] [PMC]

56. Abdessalam, C., Stephane, E., Jose, F., Didier, S. and Jacques, S.S. (2011) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identi?cation of beta-hemolytic streptococci. J. Clin. Microbiol., 49(8): 3004-3005. [Crossref] [PubMed] [PMC]

57. Christner, M., Trusch, M., Rohde, H., Kwiatkowski, M., Schluter, H., Wolters, M., Aepfelbacher, M. and Hentschke, M. (2014) Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli. PLoS One, 9(7): e101924. [Crossref]

58. Dieckmann, R. and Malorny, B (2011) Rapid screening of epidemiologically important Salmonella enterica subsp. Enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol., 77(12): 4136-4146. [Crossref] [PubMed] [PMC]

59. Leuschner, R.G.K., Beresford-Jones, N. and Robinson, C. (2004) Difference and consensus of whole cell Salmonella enterica subsp. Enterica serovars matrix-assisted laser desorption/ionization time-of-flight mass spectrometry spectra. Lett. Appl. Microbiol., 38: 24-31. [Crossref]

60. Ge, M., Kuo, A., Liu, K., Wen, Y., Chia, J., Chang, P., Lee, M., Wu, T., Chang, S. and Lu, J. (2016) Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-?ight mass spectrometry: Success rate, economic analysis, and clinical outcome. J. Microbiol. Immunol. Infect., XX, 1-7. [Crossref]

61. Jesumirhewe, C., Ogunlowo, P.O., Olley, M., Springer, B., Allerberger, F. and Ruppitsch, W. (2016) Accuracy of conventional identification methods used for Enterobacteriaceae isolates in three Nigerian hospitals. PeerJ, 4: e2511. [Crossref]

62. Naiara, M.B.R., Greiciane, F.B., Gabrielli, S.S., Larissa, A.B.B., Beatriz, M.M., Irene, D.C., Miliane, M.S.D. and Shana, D.D.C. (2017) The matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identi?cation versus biochemical tests: A study with enterobacteria from a dairy cattle environment. Braz. J. Microbiol., 48: 132-138. [Crossref] [PubMed] [PMC]

63. Huixia, C., Michael, C., Drexler, H., Patrick, C., Stuart, M., Alyssia, R., Matthew, W., Lorea A.M.P., Sam, R., David, J.M.H., Sadjia, B., John, W., Linda, C., Garrett, W., Bianli, X., Mike, D., Celine, N., David, K.J., Gehua, W. and Keding, C. (2015) Rapid, sensitive, and speci?c Escherichia coli H antigen typing by matrix-assisted laser desorption ionization-time of flight-based peptide mass fingerprinting. J. Clin. Microbiol., 53(8): 2480-2485. [Crossref] [PubMed] [PMC]

64. Ulrich, W., Katrin, S., Christiane, B., Leith, F. and Markus, K. (2011) Rapid detection of Salmonella from clinical specimen by MALDI-TOF MS. Pathology, 43 Supp1: S74.

65. Rebecca, L.B., Karen, G.J., Andrea, R.O., Melinda, A.M. and Eric, W.B. (2016) Recent and emerging innovations in Salmonella detection: A food and environmental perspective. Microb. Biotechnol., 9(3): 279-292. [Crossref] [PubMed] [PMC]

66. Public Health England. (2015) Identification of Salmonella Species. UK Standards for Microbiology Investigations. ID 24 Issue 3. Available from: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories. Last accessed on 26-11-2016.

67. Clark, A.E., Kaleta, E.J., Arora, A. and Wolk, D.M. (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev., 26: 547-603. [Crossref]

68. Kuhns, M., Zautner, A.E., Rabsch, W., Zimmermann, O., Weig, M. and Bader, O. (2012) Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry. PLoS One, 7: e40004. [Crossref]

69. Markus, K. and Elisabeth, N. (2016) How MALDI-TOF mass spectrometry can aid diagnosis of hard-to-identify pathogenic bacteria. Exp. Rev. Mol. Diagn., 16(5): 509-511. [Crossref] [PubMed]

70. Andrew, E.C., Erin, J.K., Amit, A. and Donna, M.W. (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev., 26(3): 547-603. [Crossref] [PubMed] [PMC]