Open Access
Review (Published online: 02-08-2018)
4. Red flour beetle (Tribolium castaneum): From population genetics to functional genomics
Harshit Kumar, Manjit Panigrahi, Supriya Chhotaray, V. Bhanuprakash, Rahul Shandilya, Arvind Sonwane and Bharat Bhushan
Veterinary World, 11(8): 1043-1046

Harshit Kumar: Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.
Manjit Panigrahi: Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.
Supriya Chhotaray: Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.
V. Bhanuprakash: Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.
Rahul Shandilya: Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.
Arvind Sonwane: Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.
Bharat Bhushan: Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India.

doi: 10.14202/vetworld.2018.1043-1046

Share this article on [Facebook] [LinkedIn]

Article history: Received: 17-03-2018, Accepted: 25-06-2018, Published online: 02-08-2018

Corresponding author: Manjit Panigrahi

E-mail: manjit707@gmail.com

Citation: Kumar H, Panigrahi M, Chhotaray S, Bhanuprakash V, Shandilya R, Sonwane A, Bhushan B (2018) Red flour beetle (Tribolium castaneum): From population genetics to functional genomics, Veterinary World, 11(8): 1043-1046.
Abstract

Tribolium castaneum is a small and low maintenance beetle that has emerged as a most suitable insect model for studying developmental biology and functional genetic analysis. Diverse population genetic studies have been conducted using Tribolium as the principal model to establish basic facts and principles of inbreeding experiments and response to the selection and other quantitative genetics fundamentals. The advanced molecular genetic studies presently focused on the use of Tribolium as a typical invertebrate model for higher diploid eukaryotes. After a whole genome sequencing of Tribolium, many areas of functional genomics were unraveled, which enabled the use of it in many technical approaches of genomics. The present text reviews the use of Tribolium in techniques such as RNAi, transgenic studies, immune priming, immunohistochemistry, in situ hybridization, gene sequencing for characterization of microRNAs, and gene editing using engineered endonuclease. In contrast to Drosophila, the T. castaneum holds a robust systemic RNAi response, which makes it an excellent model for comparative functional genetic studies.

Keywords: functional genomics, hox gene, insertional mutagenesis, RNAi, Tribolium.

References

1. Hunt, T., Bergsten, J., Levkanicova, Z,,Papadopoulou, A., StJohn, O., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., and Caterino, M.S., (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318: 1913-1916. [Crossref] [PubMed]

2. Richards, S., Gibbs, R.A., Weinstock, G.M., Brown, S.J., Denell, R., Beeman, R.W., Bucher, G., Friedrich, M., Grimmelikhuijzen, C.J.P., and Klingler, M. (2008) The genome of the model beetle and pest Tribolium castaneum. Nature, 452: 949-955. [Crossref] [PubMed]

3. Sokoloff, A. (1972) The Biology of Tribolium with Special Emphasis on Genetic Aspects. Vol. 1. Clarendon Press and Oxford University Press, Oxford.

4. Chapman, R.N. (1924) Nutritional studies on the confused flour beetle, Tribolium confusum Duval. J. Gen. Physiol.,11: 565-585. [Crossref]

5. Lorenzen, M.D., Kimzey, T., Shippy, T.D., Brown, S.J., Denell, R.E., and Beeman, R.W. (2007) Piggybac-based insertional mutagenesis in Tribolium castaneum using donor/helper hybrids. Insect Mol. Biol., 16: 265-275. [Crossref] [PubMed]

6. Fernandez, A., Toro, M.A., and Fanjul, C.L. (1995) The effect of inbreeding on the redistribution of genetic variance of fecundity and viability in Tribolium castaneum. ?J. Hered., 75: 376-381. [Crossref]

7. Wade, M.J., Shuster, S.M., and Stevens, L. (1996) Inbreeding: Its effect on response to selection for pupal weight and the heritable variance in fitness in the flour beetle, Tribolium castaneum. Evolution, 50: 723-733. [Crossref] [PubMed]

8. Michalczyk, L. (2011) Inbreeding promotes female promiscuity. Science, 333: 1739-1742. [Crossref] [PubMed]

9. Pray, L.A. and Goodnight, C.J. (1997) The effect of inbreeding on phenotypic variance in the red flour beetle Tribolium castaneum. Evolution, 51: 308-313. [Crossref] [PubMed]

10. Park, T. (1937) The inheritance of the mutation "pearl: In the flour beetle, Tribolium castaneum Herbst. Am. Nat., 71: 143-157. [Crossref]

11. Beeman, R.W. (1987) A homeotic gene cluster in the red flour beetle. Nature,327: 247-249. [Crossref]

12. Arakane, Y., Muthukrishnan, S., Kramer, K.J., Specht, C.A., Tomoyasu, Y., Lorenzen, M.D., Kanost, M., and Beeman, R.W. (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol. Biol., 14: 453-463. [Crossref] [PubMed]

13. Miller, S.C., Brown, S.J., and Tomoyasu, Y. (2008) Larval RNAi in Drosophila? Dev. Genes. Evol., 218: 505-510. [Crossref] [PubMed]

14. Burand, J.P. and Hunter W.B. (2013) RNAi: Future in insect management. J. Invertebr. Pathol., 112: 68-S74. [Crossref]

15. Patel, N.H., Ball, E.E., and Goodman, C.S. (1992) Changing role of even-skipped during the evolution of insect pattern formation. Nature, 357: 339-342. [Crossref] [PubMed]

16. Berghammer, A.J., Klingler, M., and Wimmer, E.A. (1999) A universal marker for transgenic insects. Nature, 402: 370-371. [Crossref] [PubMed]

17. Strobl, F., and Stelzer, E.H. (2016) Long-term fluorescence live imaging of Tribolium castaneum embryos: Principles, resources, scientific challenges and the comparative approach. Curr. Opin. Insect Sci., 18: 17-26. [Crossref] [PubMed]

18. Joanna, J.F. and Hajek, A. E. (2017) Maternal exposure of a beetle to pathogens protects offspring against fungal disease. J. Pone.0125197.

19. Wu, W., Xiong, W., Li, C., Zhai, M., Li, Y., Ma. F., and Li, B. (2017) MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum. J.Ygeno., 109: 362-373. [Crossref]

20. Futo, M., Armitage, S.A.O. and Kurtz, J. (2015) Microbiota plays a role in oral immune priming in Tribolium castaneum. Front Microbiol., 6: 1383. [PubMed]

21. Rosengaus, R.B., Hays, N., Biro, C., Kemos, J., Zaman, M., Murray, J. and Smith, W. (2006) Pathogen-induced maternal effects result in enhanced immune responsiveness across generations. Ecol. Evol., 7: 2925-2935. [Crossref] [PubMed] [PMC]

22. Trauer-Kizilelma, U. and Hilker, M. (2015) Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes. J.Ibmb., 64: 91-9. [Crossref]

23. Etebari, K. and Asgari, S. (2016) Revised annotation of Plutellaxylostella microRNAs and their genome-wide target identification. Insect Mol. Biol., 2: 788-799. [Crossref] [PubMed]

24. Jayakodi, M., Jung, J. W., Park, D., Ahn, Y.J., Lee, S.C., Shin, S.Y., Shin, C., Yang, T.J., and Kwon, H.W. (2015) Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apiscerana and Apismellifera. BMC Genomics, 16: 680. [Crossref] [PubMed] [PMC]

25. Lopez-Ezquerra, A., Harrison M.C. and Bornberg-Bauer, E. (2017) Comparative analysis of lincRNA in insect species. ?BMC Evol. Biol., 17: 155. [Crossref] [PubMed] [PMC]

26. Gilles, A.F., Schinko, J.B., and Averof, M. (2015) Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. J Dev., 142: 2832-9. [Crossref] [PubMed]