Open Access
Research (Published online: 16-12-2018)
6. Phenotypic and genotypic drug resistance profile of Salmonella serovars isolated from poultry farm and processing units located in and around Mumbai city, India
R. N. Waghamare, A. M. Paturkar, V. M. Vaidya, R. J. Zende, Z. N. Dubal, A. Dwivedi and R. V. Gaikwad
Veterinary World, 11(12): 1682-1688

R. N. Waghamare: Department of Veterinary Public Health, Bombay Veterinary College, Parel, Mumbai, Maharashtra, India.
A. M. Paturkar: Department of Veterinary Public Health, Bombay Veterinary College, Parel, Mumbai, Maharashtra, India.
V. M. Vaidya: Department of Veterinary Public Health, Bombay Veterinary College, Parel, Mumbai, Maharashtra, India.
R. J. Zende: Department of Veterinary Public Health, Bombay Veterinary College, Parel, Mumbai, Maharashtra, India.
Z. N. Dubal: Department of Veterinary Public Health, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
A. Dwivedi: Department of Veterinary Public Health, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
R. V. Gaikwad: Department of Veterinary Public Health, Bombay Veterinary College, Parel, Mumbai, Maharashtra, India.

doi: 10.14202/vetworld.2018.1682-1688

Share this article on [Facebook] [LinkedIn]

Article history: Received: 26-08-2018, Accepted: 25-10-2018, Published online: 16-12-2018

Corresponding author: R. N. Waghamare

E-mail: rupeshwaghmare@gmail.com

Citation: Waghamare RN, Paturkar AM, Vaidya VM, Zende RJ, Dubal ZN, Dwivedi A, Gaikwad RV (2018) Phenotypic and genotypic drug resistance profile of Salmonella serovars isolated from poultry farm and processing units located in and around Mumbai city, India, Veterinary World, 11(12): 1682-1688.
Abstract

Background and Aim: The extensive use of antimicrobials in poultry has led to an increase in bacterial multidrug resistance, and the emergence of multidrug-resistant nontyphoidal Salmonella is a global problem. This study was performed to detect antibiotic-resistant Salmonella serovars in poultry farming and processing environment.

Materials and Methods: A total of 956 various samples, comprising 432 farm origin, 324 poultry processing stage wise and environmental, and 154 product processing stages and environmental samples, were collected from poultry farms and processing units located in and around Mumbai city. Of a total of 71 recovered isolates, 42 randomly selected Salmonella isolates were subjected for antibiotic susceptibility testing by disk diffusion method and serotyping. A total of 31 serotypically confirmed isolates were characterized for the presence of tetA, tetB, blaTEM, and CTX-M gene.

Results: Higher resistance was recorded against Doxycycline (100%), followed by Oxytetracycline (97.62%), Neomycin (88.10%), Erythromycin (83.33%), Tetracycline (78.57%), and Ceftizoxime (35.71%). Resistance from 0.00 to 26.19 percent was found to antimicrobials, namely Norfloxacin (26.19%), Ampicillin (21.43%), Azithromycin (21.43%), Ciprofloxacin (19.05%), Colistin (4.76%), Streptomycin (16.67%), Cefotaxime (14.19%), Enrofloxacin (14.29%), Amoxyclav (14.29%), Gentamicin (7.14%), Chloramphenicol (4.76%), Amikacin (4.76%), and Ceftazidime (0.0%). Results demonstrate that the Salmonella Virchow dominated and all serotypes were found to carry Tetracycline resistance gene tetA, 5 isolates were found to be positive for blaTEM, whereas none of the isolates were carrying tetB and CTX-M gene.

Conclusion: This study revealed that there is a significant rise of Tetracycline resistance with the presence of tetA gene in Salmonella spp. which indicates selective pressure for adopting resistance against tetracycline group of antibiotics.

Keywords: multidrug-resistant, poultry, Salmonella spp., tetracycline.

References

1. Kiilholma, J. (2007) Food-Safety Concerns in the Poultry Sector of Developing Countries http://www.fao.org/AG/againfo/home/events/bangkok2007/docs/part2/2_8.pdf. Last accessed on 12-10-2018.

2. Yang, H., Dey, S., Buchanan, R. and Biswas, D. (2014) Pests in Poultry, Poultry Product-Borne Infection and Future Precautions Practical Food Safety: Contemporary Issues and Future Directions. 1st ed. John Wiley & Sons, Ltd. Sussex. p535-552.

3. Simmons, M., Fletcher, D.L., Cason, J.A. and Berrang, M.E. (2003) Recovery of Salmonella from retail broilers by a whole-carcass enrichment procedure. J. Food Prot., 66(3): 446-450. [Crossref]

4. Bryan, F.L. and Doyle, M.P. (1995) Health risks and consequences of Salmonella and Campylobacter jejuni in raw poultry. J. Food Prot., 58(3): 326-344. [Crossref]

5. Centers for Disease Control and Prevention. (2012) Available from: http://www.cdc.gov/Salmonella/general. Last accessed on 12-10-2018.

6. Guibourdenche, M., Roggentin, P., Mikoleit, M., Fields, P.I., Bockemuhl, J., Grimont, P.A. and Weill, F.X. (2010) Supplement 2003-2007 (No. 47) to the white-kauffmann-le minor scheme. Res. Microbiol., 161(1): 26-29. [Crossref] [PubMed]

7. Khanna, H.R. (2009) Prevalence of Salmonella in Broiler Retail Meat Shops in New Delhi, India. A Thesis Submitted To Chiang Mai University And Freie Universitat Berlin in Partial Fulfilment of the Requirements for the Degree of Master of Veterinary Public Health.

8. Apata, D.F. (2009) Antibiotic resistance in poultry. Int. J. Poult. Sci., 8(4): 404-408. [Crossref]

9. Mazaheri, N.F.R., Heuzenroeder, M.W. and Barton, M.D. (2011) Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet. Microbiol., 148(2-4): 276-282. [Crossref] [PubMed]

10. Soufi, L., Saenz, Y., Toro, M., Abbassi, M.S., Rojo-Bezares, B., Vinue, L., Bouchami, O., Touati, A., Hassen, A.B., Hammami, S. and Torres, C. (2012) Phenotypic and genotypic characterization of Salmonella enterica recovered from poultry meat in Tunisia and identification of new genetic traits. Vector Borne Zoonotic Dis., 12(12): 10-16. [Crossref] [PubMed] [PMC]

11. UCS: Union of Concerned Scientists. (2001) Hogging It! Estimates of Antimicrobial Abuse in Livestock. In: Mellon, M., Benbrook, C. and Benbrook, K.L., editors. USC, Cambridge, MA.

12. IS 5887. (1999) Methods for Detection of Bacteria Responsible for Food Poisoning Part 3: General Guidance on Methods for the Detection of Salmonella.

13. Rahn, K., De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galan, J.E., Ginocchio, C., Curtiss, R. and Gyles, C.L. (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes., 6(4): 271-279. [Crossref]

14. CLSI. (2017) Clinical and Laboratory Standards Institute. M100-S17: Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, PA.

15. Bhattacharjee, A., Sen, M.R., Pradyot, S.A. and Nath, P.G. (2007) Detection of OXA-2 group extended-spectrum-β-lactamase-producing clinical isolates of Escherichia coli from India. J. Antimicrob. Chemother., 60(3): 703-704. [Crossref] [PubMed]

16. Fonseca, E.L., Mykytczuk, O.L., Asensi, M.D., Reis, E.M., Ferraz, L.R., Paula, F.L., Ng, L.K. and Rodrigues, D.P. (2006) Clonality and antimicrobial resistance gene profiles of multidrug-resistant Salmonella enterica serovar infantis isolates from four public hospitals in Rio de Janeiro. Brazil. J. Clin. Microbiol., 44(8): 2767-2772. [Crossref] [PubMed] [PMC]

17. Boyd, D.A., Tyler, S., Christianson, S., McGeer, A., Muller, M.P., Willey, B.M., Bryce, E., Gardam, M. and Nordmann, P.M.R. (2004) Mulvey and Canadian nosocomial infection surveillance program, health Canada complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob. Agents Chemother., 48(10): 3758-3764. [Crossref] [PubMed] [PMC]

18. Andersson, D.I. (2003) Persistence of antibiotic-resistant bacteria. Curr. Opini. Microbiol., 6(5): 452-456. [Crossref]

19. Ishihara, K., Takahashi, T., Morioka, A., Kojima, A., Kijima, M., Asai, T. and Tamura, Y. (2009) National surveillance of Salmonella enterica in food-producing animals in Japan. Acta Vet. Scand., 51(1): 35. [Crossref]

20. Carrami-ana, J.J., Rota, C., Agustin, I. and Herrera, A. (1997) High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain. Vet. Microbiol., 104(1-2): 133-139. [Crossref] [PubMed]

21. Poppe, C., McFadden, K.A. and Demczuk, W.H. (1996) Drug resistance, plasmids, biotypes and susceptibility to bacteriophages of Salmonella isolated from poultry in Canada. Int. J. Food Microbiol., 30(3): 325-344. [Crossref]

22. Jiang, H.X., Song, L., Liu, J., Zhanga, X.H., Rena, Y.N., Zhanga, W.H., Zhanga, J.Y., Liua, Y.H., Webber, M.A., Ogboluc, D.O., Zenga, Z.L. and Piddock, L.J.V. (2014) Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. Int. J. Antimicrob. Agents, 43(3): 242-247. [Crossref] [PubMed]

23. Scur, M.C., Pinto, F.G.S., De Bona, E.A.M., Weber, L.D., Alves, L.F.A. and de Moura, A.C. (2014) Occurrence and antimicrobial resistance of Salmonella serotypes isolates recovered from poultry of Western Parana. Brazil. Afr. J. Agric. Res., 9(9): 823-830. [Crossref]

24. Ghazaey, S. and Mirmomeni, M.H. (2012) Microbial-resistant Salmonella enteritidis isolated from poultry samples. Rep. Biochem. Mol. Biol., 1(1): 10-13.

25. Abunna, F., Bedasa, M., Beyene, T., Ayana, D., Mamo, B. and Duguma, R. (2016) Salmonella: Isolation and antimicrobial susceptibility tests on isolates collected from poultry farms in and around Modjo, Central Oromia, and Ethiopia. J. Anim. Poult. Sci., 5(2): 21-35.

26. Ghoddusi, A., Nayeri, F.B., Karimi, V., Ashrafi, T.I., Moulana, Z. and Zahraei, S.T. (2015) Molecular identification of Salmonella infantis isolated from backyard chickens and detection of their resistance genes by PCR. Indian J. Vet. Res., 16(3): 293-297.

27. Mir, I.A., Kashyap, S.K. and Maherchandani, S. (2015) Isolation, serotype diversity and antibiogram of Salmonella enterica isolated from different species of poultry in India. Asian Pac. J. Trop. Biomed., 5(7): 561-567. [Crossref]

28. Kaushik, P, Kumari, A.S., Bharti, S.K. and Dayal, S. (2014) Isolation and prevalence of Salmonella from chicken meat and cattle milk collected from local markets of Patna, India. Vet. World, 7(2): 62-65. [Crossref]

29. Machado, S.C.A., Pereira, V.L.A., Aquino, M.H.C., Santos, A.F.M., Rodrigues, D.P., Giombelli, A. and Nascimento, E.R. (2017) Serotyping and genotyping of Salmonella strains isolated from broilers, chicken carcasses before and after chilling, and frozen chicken breasts produced in the states of Mato Grosso do Sul and Santa Catarina, Brazil. Brazil. J. Poult. Sci., 19(1): 135-142. [Crossref]

30. Centers for Disease Control and Prevention (2005) Salmonella Surveillance. Annual Summary 2004. Atlanta, GA.

31. Myint, M.S. (2004) Epidemiology of Salmonella Contamination of Poultry Meat Products: Knowledge Gaps in the Farm to Store Products. Ph.D. Dissertation. University of Maryland, Maryland, USA. p86-98.

32. Lebdah, M.A., Mohammed, W.M., Eid, S. and Hamed, R.I. (2017) Molecular detection of some antimicrobial resistance genes in Salmonella Species isolated from commercial layers in Egypt. Zag. Vet. J., 45(1): 29-38. [Crossref]

33. Jouini, A., Ben, S.K., Saenz, Y., Klibi, N., Costa, D., Vinue, L., Zarazaga, M., Boudabous, A. and Torres, C. (2009) Detection of multiple-antimicrobial resistance and characterization of the implicated genes in Escherichia coli isolates from foods of animal origin in Tunisia. J. Food Protect., 72(5): 1082-1088. [Crossref]

34. Soufi, L., Abbassi, M.S., Saenz, Y., Vinue, L., Somalo, S., Zarazaga, M., Abbas, A. and Dbaya, R. (2009) Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. Foodborne Pathog. Dis., 6(3): 1067-1073. [Crossref] [PubMed]

35. Sharkawy, H., Tahoun, A., El Galiel, A., El Gohary, A., El Abasy, M., El Khayat, F., Gillespie, T., Kitade, Y., Hafez, H.M., Neubauer, H. and El Adawy, H. (2017) Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut. Pathog., 9(1): 8. [Crossref] [PubMed] [PMC]

36. Wittuma, T.E., Mollenkopfa, D.F. and Erdmanb, M.M. (2012) Detection of Salmonella enterica isolates producing CTX-M cephalosporinase in U.S. Livestock populations. Appl. Environ. Microbiol., 78(20): 7487-7491. [Crossref] [PubMed] [PMC]

37. Riano, I., Moreno, M.A., Teshager, T., Saenz, Y., Dominguez, L. and Torres, C. (2006) Detection and characterization of extended-spectrum b-lactamases in Salmonella enterica strains of healthy food animals in Spain. J. Antimicrob. Chemother., 58(4): 844-847. [Crossref] [PubMed]

38. Oliver, A., Coque, T.M. and Alonso, D. (2005) CTX-M-10 linked to a phage-related element is widely disseminated among Enterobacteriaceae in a Spanish hospital. Antimicrob. Agents Chemother., 49(4): 1567-1571. [Crossref] [PubMed] [PMC]

39. Kodimalar, K., Rajini, R.A., Ezhilvalavan, S. and Sarathchandra, G. (2014) A survey of chlortetracycline concentration in feed and its residue in chicken egg in commercial layer farms. J. Biosci., 39(3): 425-431. [Crossref]

40. Van Boeckel, T.P., Brower, C. and Gilbert, M. (2015) Global trends in antimicrobial use in food animals. Proc. Nat. Acad. Sci., 112(18): 5649-5654. [Crossref] [PubMed] [PMC]

41. Su, L.H., Chiu C.H, Chu, C. and Ou, J.T. (2004) Antimicrobial resistance in nontyphoid Salmonella serotypes: A global challenge. Clin. Infect. Dis., 39(4): 546-551. [Crossref] [PubMed]

42. EFSA. (2015) EFSA Explains Zoonotic Diseases - Salmonella. European Food Safety Authority, Consulted. Available from: http://www.efsa.europa.eu/sites/default/files/corporate_publications/files/factsheetSalmonella.pdf. Last accessed on 9-10-2018.