doi: 10.14202/vetworld.2018.965-970
Share this article on [Facebook] [LinkedIn]
Article history: Received: 25-01-2018, Accepted: 04-06-2018, Published online: 19-07-2018
Corresponding author: Diah Savitri Ernawati
E-mail: diah-s-e@fkg.unair.ac.id
Citation: Mulyani SWM, Ernawati DS, Astuti ER, Rantam FA (2018) Hypoxic preconditioning effect on stromal cells derived factor-1 and C-X-C chemokine receptor type 4 expression in Wistar rat's (Rattus norvegicus) bone marrow mesenchymal stem cells (in vitro study), Veterinary World, 11(7): 965-970.Aim: To examine the effect of hypoxic preconditions on the ability of bone marrow stem cells culture mediated expression C-X-C chemokine receptor type 4 (CXCR4) and stromal cells derived factor-1 (SDF-1) in vitro.
Materials and Methods: Bone marrow mesenchymal stem cells (BMSCs) were derived from 12 femurs of 200 g Wistar male rats. The animals were euthanized before BMSCs isolation. BMSCs were divided into two groups, control group: Normoxic condition 21% O2 and treatment group: Hypoxic condition 1% O2. The characterization of BMSCs was analyzed using flow cytometry by cluster differentiation 34 and cluster differentiation 105. The expression of CXCR4 and SDF-1 measured using immunocytochemistry immunofluorescence label after 48-h incubation in a low-tension oxygen chamber with an internal atmosphere consisting of 95% N2, 5% CO2, and 1% O2. All data were subjected to a normality test and then analyzed using t-test statistic (p<0.05).
Results: The characterization of bone marrow stem cells showed positive cluster differentiation 34 and cluster differentiation 105. A hypoxic precondition (1% O2) in culture increases CXCR4 (p=0.000) and SDF-1 expression than normoxic conditions (p=0.000) (p<0.05).
Conclusion: Hypoxic preconditioning with 1% O2 increase CXCR4 and SDF1 expression.
Keywords: bone marrow stem cells, C-X-C chemokine receptor type 4, hypoxic preconditioning, mesenchymal stem cells, stromal cells derived factor-1.
1. Pratheesh, M. D., Dubey, P. K., Nath, A., Gade, N. E., Kumar, R., and Sharma, G. T. (2011) Mesenchymal stem cells and it's Characterization. Vet. World, 4(12), 571. [Crossref]
2. Safitri, E., Utama, S., Bumi, C., Mulyani, S.W.M., Retnowati, E., Prasetyo R.H., Mas'ud, H., Aulani'am, A, Ferdiansyah, M. and Fedik, A.R. (2014) Hypoxic preconditioning for viable and self renewing mesenchymal stem cells (Mscs) as the regeneration of spermatogenesis process. Adv. Nat. Appl. Sci., 8: 42-47.
3. Khan, M., Kwiatkowski, P., Rivera, B.K. and Kuppusamy, P. (2010) Oxygen and oxygenation in stem-cell therapy for myocardial infarction. Life Sci., 87: 269-274. [Crossref] [PubMed] [PMC]
4. Chacko, S.M., Ahmed, S., Selvendiran, K., Kuppusamy, M.L., Khan, M. and Kuppusamy, P. (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am. J. Physiol. Cell Physiol., 299: C1562-C1570. [Crossref]
5. Yan, F., Yao, Y., Chen, L., Li, Y., Sheng, Z. and Ma, G. (2012) Hypoxic preconditioning improves survival of cardiac progenitor cells: Role of stromal cell-derived factor-1α-CXCR4 axis. PLoS One, 7: e37948. [Crossref]
6. Rantam, F., Ferdiansyah, M.N. and Purwati, A. (2009) Stem cell exploration. Methods of isolation and culture. Airlangga University Press, Surabaya. p10-25.
7. Tran, S.D., Pillemer, S.R., Dutra, A., Barrett, A.J., Brownstein, M.J., Key, S., Pak, E., Leakan, R.A., Kingman, A., Yamada, K.M., Baum, B.J. and Mezey, E. (2003) Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: A molecular analytical study. Lancet, 361: 1084-1108. [Crossref]
8. Haque, N., Rahman, M.T., Kasim, N.H.A. and Alabsi, A.M. (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. Sci. World J., 632972; 1-2. [Crossref] [PubMed] [PMC]
9. Coutu, D.L. and Galipeau, J. (2011) Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging (Albany NY), 3: 920. [Crossref] [PubMed] [PMC]
10. Chow, D.C., Wenning, L.A., Miller, W.M. and Papoutsakis, ET. (2001) Modeling O2 distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys. J., 81: 675-684. [Crossref]
11. Sohni, A. and Verfaillie, C.M. (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int., 130763: 1-9. [Crossref] [PubMed] [PMC]
12. Kermer, P., Liman, J., Weishaupt, J.H. and Bahr, M. (2004) Neuronal apoptosis in neurodegenerative diseases: From basic research to clinical application. Neurodegener. Dis., 1: 9-19. [Crossref]
13. Lin, C.Y., Chang, F.H., Chen, C.Y., Huang, C.Y., Hu, F.C., Huang, W.K., Ju, S.S. and Chen, M.H. (2011) Cell therapy for salivary gland regeneration. J. Dent. Res., 90: 341-346. [Crossref] [PubMed]
14. Cencioni, C., Capogrossi, M.C. and Napolitano, M. (2012) The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc. Res., 94: 400-407. [Crossref] [PubMed]
15. Feng, J., van der Zwaag, M., Stokman, M.A., van Os, R. and Coppes, R.P. (2009) Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother. Oncol., 92: 466-471. [Crossref] [PubMed]