doi: 10.14202/vetworld.2018.852-858
Share this article on [Facebook] [LinkedIn]
Article history: Received: 13-02-2018, Accepted: 17-05-2018, Published online: 26-06-2018
Corresponding author: Dilip Kumar Swain
E-mail: dilip_swain@yahoo.com
Citation: Mishra AK, Kumar A, Swain DK, Yadav S, Nigam R (2018) Insights into pH regulatory mechanisms in mediating spermatozoa functions, Veterinary World, 11(6): 852-858.Regulation of pH in spermatozoa is a complex and dynamic process as sperm cells encounter different pH gradients during their journey from testes to the site of fertilization in female genital tract. The precise regulations of pH in sperm cells regulate the sperm functions such as motility, hyperactivity, capacitation, and acrosome reaction. Electrophysiological, pharmacological, and molecular studies have revealed the presence of different ion channels and exchanger systems which regulate intracellular pH in sperm cells as well as regulate sperm functions. Recent studies also have shown the potential involvement of pH in the regulation of fertility competence of sperm cells, and alterations in pH have shown to impede sperm functions. This mini-review discusses the probable mechanisms involved in pH regulation in sperm cells and how pH is involved in regulation of various sperm functions.
Keywords: acrosome reaction, capacitation, fertilization, pH, sperm motility, spermatozoa.
1. Casey, J.R., Grinstein, S. and Orlowski, J. (2010) Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol., 11: 50-61. [Crossref] [PubMed]
2. Darszon, A., Labarca, P., Nishigaki, T. and Espinosa, F. (1999) Ion channels in sperm physiology. Physiol. Rev., 79: 481-510. [Crossref] [PubMed]
3. Bonnie Ng, K.Y., Mingels, R., Morgan, H., Macklon, N. and Cheong, Y. (2018) In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: A systematic review. Hum. Reprod. Update, 24(1): 15-34. [Crossref] [PubMed]
4. Shum, W.W.C., Ruan, Y.C., Da Silva, N. and Breton, S. (2011) Establishment of cell-cell crosstalk in the epididymis: Control of luminal acidification. J. Androl., 32: 576-586. [Crossref] [PubMed] [PMC]
5. Zhou, J., Chen, L., Li, J., Li, H., Hong, Z., Xie, M., Chen, S. and Yao, B. (2015) The semen pH affects sperm motility and capacitation. PLoS One, 10(7): e0132974. [Crossref]
6. Talluri, T.R., Mal, G. and Ravi, S.K. (2017) Biochemical components of seminal plasma and their correlation to the fresh seminal characteristics in Marwari stallions and Poitou jacks. Vet. World, 10(2): 214-220. [Crossref] [PubMed] [PMC]
7. Wilson-Leedy, J.G., Kanuga, M.K. and Ingermann, R.L. (2009) Influence of osmolality and ions on the activation and characteristics of zebrafish sperm motility. Theriogenology, 71(7): 1054-1062. [Crossref] [PubMed]
8. Alavi, S.M.H. and Cosson, J. (2005) Sperm motility in fishes. I. Effects of temperature and pH: A review. Cell Biol. Int., 29(2): 101-110. [Crossref] [PubMed]
9. Nagahama, Y. (1994) Endocrine regulation of gametogenesis in fish. Int. J. Dev Biol., 38: 217-229. [PubMed]
10. Ashizawa, K., Wishart, G.J., Nakao, H., Okino, Y. and Tsuzuki, Y. (1994) Inhibition of temperature-dependent immobilization of fowl spermatozoa at body temperature by an increased intracellular pH. J. Reprod. Fertil., 101: 593-598. [Crossref] [PubMed]
11. Holm, L. and Wishart, G.J. (1998) The effect of pH on the motility of spermatozoa from chicken, turkey and quail. Anim. Reprod. Sci., 54: 45-54. [Crossref]
12. Bonato, M., Cornwallis, C.K., Malecki, I.A., Rybnik-Trzaskowska, P.K. and Cloete, S.W. (2012) The effect of temperature and pH on the motility and viability of ostrich sperm. Anim. Reprod. Sci., 133: 123-128. [Crossref] [PubMed]
13. Matsuzaki, M., Mizushima, S., Hiyama, G., Hirohashi, N., Shiba, K., Inaba, K., Suzuki, T., Dohra, H., Ohnishi, T., Sato, Y., Kohsaka, T., Ichikawa, Y., Atsumi, Y., Yoshimura, T. and Sasanami, T. (2015) Lactic acid is a sperm motility inactivation factor in the sperm storage tubules. Sci. Rep., 5: 17643. [Crossref] [PubMed] [PMC]
14. Lishko, P.V., Botchkina, I.L., Fedorenko, A. and Kirichok, Y. (2010) Acid extrusion from human spermatozoa is mediated by Flagellar voltage-gated proton channel. Cell, 140(3): 327-337. [Crossref] [PubMed]
15. Demarco, I.A., Espinosa, F., Edwards, J., Sosnik, J., De La Vega-Beltran, J.L., Hockensmith, J.W., Kopf, G.S., Darszon, A. and Visconti P.E. (2003) Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation. J. Biol. Chem., 278: 7001-7009. [Crossref] [PubMed]
16. Gatti, J.L., Chevrier, C., Paquignon, M., Dacheux, J.L. (1993) External ionic conditions, internal pH and motility of ram and boar spermatozoa. J. Reprod. Fertil., 98: 439-449. [Crossref] [PubMed]
17. Correia, J., Michelangeli, F. and Publicover, S. (2015) Regulation and roles of Ca2+ stores in human sperm. Reproduction, 150: R65-R76. [Crossref]
18. Ellinger I. (2016) The calcium-sensing receptor and the reproductive system. Front Physiol., 7: 371. [Crossref] [PubMed] [PMC]
19. Lishko, P.V. and Kirichok, Y. (2010) The role of Hv1 and CatSper channels in sperm activation. J. Physiol., 588: 4667-4672. [Crossref] [PubMed] [PMC]
20. Babcock, D.F., Rufo, G.A. Jr. and Lardy, H.A. (1983) Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm. Proc. Natl. Acad. Sci. USA, 80: 1327-1331. [Crossref]
21. Jones, J.M. and Bavister, B.D. (2000) Acidification of intracellular pH in bovine spermatozoa suppresses motility and extends viable life. J. Androl., 21: 616-624. [PubMed]
22. Rizvi, A.A., Quraishi, M.I. and Sarkar, V. (2009) The effect of pH and viscosity on bovine spermatozoa motility under controlled conditions. Int. Urol. Nephrol., 41: 523. [Crossref] [PubMed]
23. Contri, A., Gloria, D., Robbe, C., Valorz, L., Wegher, A. and Carluccio, A. (2013) Kinematic study on the effect of pH on bull sperm function. Anim. Reprod. Sci., 136(4): 252-259. [Crossref] [PubMed]
24. Jaiswal, B.S. and Majumder, G.C. (1998) Biochemical parameters regulating forward motility initiation in vitro in goat immature epididymal spermatozoa. Reprod. Fert. Dev., 10: 299-307. [Crossref] [PubMed]
25. Das, S., Saha, S., Majumder, G.C. and Dungdung, S.R. (2010) Purification and characterization of a sperm motility inhibiting factor from caprine epididymal plasma. PLoS One, 5(8): e12039. [Crossref]
26. Jaiswal, B.S., Das, K., Saha, S., Dungdung, S.R. and Majumder, G.C. (2010) Purification and characterization of a motility initiating protein from caprine epididymal plasma. J. Cell Physiol., 222: 254-263. [Crossref] [PubMed]
27. Chen, L., Ge, Y., Liang, Y. and Yao, B. (2014) Semen pH effects sperm motility and capacitation by influencing Na/K-ATPase activity and Ca concentration in spermoplasm. Transl. Androl. Urol., 3(S1): AB185. [PMC]
28. Cross, N.L. (2007) Effect of pH on the development of acrosomal responsiveness of human sperm. Andrologia, 39: 55-59. [Crossref] [PubMed]
29. Chen, W.Y., Xu, W.M., Chen, Z.H., Ni, Y., Yuan, Y.Y., Zhou, S.C., Zhou, W.W., Tsang, L.L., Chung, Y.W., Hoglund, P., Chan, H.C. and Shi, Q.X. (2009) Cl-is required for HCO3-entry necessary for sperm capacitation in guinea pig: Involvement of a Cl-/HCO3-exchanger (SLC26A3) and CFTR. Biol. Reprod., 80: 115-123. [Crossref]
30. Wandernoth, P.M., Mannowetz, N., Szczyrba, J., Grannemannm, L., Wolf, A., Becker, H.M., Sly, W.S. and Wennemuth, G. (2015) Normal fertility requires the expression of carbonic anhydrases II and IV in sperm. J. Biol. Chem., 290: 29202-29216. [Crossref] [PubMed] [PMC]
31. Puga, M.L.C., Pinto, N.A., Torres, R.P., Romarowski, A., Vicens, S.A., Visconti, P.E., Darszon, A., Trevino, C.L. and Buffone, M.G. (2017) Essential role of cftr in pka-dependent phosphorylation, alkalinization, and hyperpolarization during human sperm capacitation. J. Cell Physiol., 232(6): 1404-1414. [Crossref] [PubMed] [PMC]
32. Wang, D., Hu, J., Bobulescu, I.A., Quill, T.A., McLeroy, P., Moe, O.W. and Garbers, D.L. (2007) A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc. Natl. Acad. Sci. USA, 104: 9325-9330. [Crossref] [PubMed] [PMC]
33. Chen, S.R., Chen, M., Deng, S.L., Hao, X.X., Wang, X.X. and Liu, Y.X. (2016) Sodium-hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis., 7: e2152. [Crossref]
34. Takeshita, K., Sakata, S., Yamashita, E., Fujiwara, Y., Kawanabe, A., Kurokawa, T., Okochi, Y., Matsuda, M., Narita, H., Okamura, Y. and Nakagawa, A. (2014) X-ray crystal structure of voltage-gated proton channel. Nat. Struct. Mol. Biol., 21: 352-357. [Crossref] [PubMed]
35. Ramsey, I.S., Mokrab, Y., Carvacho, I., Sands, Z.A., Sansom, M. and Clapham, D.E. (2010) An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat. Struct. Mol. Biol., 17: 869-875. [Crossref] [PubMed] [PMC]
36. Lee, S.Y., Letts, J.A. and Mackinnon, R. (2008) Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc. Natl. Acad. Sci. USA, 105: 7692-7695. [Crossref] [PubMed] [PMC]
37. Lishko, P.V., Kirichok, Y., Ren, D., Navarro, B., Chung, J.J. and Clapham, D.E. (2012) The control of male fertility by spermatozoan ion channels. Annu Rev. Physiol., 74: 453-475. [Crossref] [PubMed] [PMC]
38. DeCoursey, T.E., Morgan, D., Musset, B. and Cherny, V.V. (2016) Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J. Gen. Physiol., 148(2): 97-118. [Crossref] [PubMed] [PMC]
39. Khan, M.S., Zaman, S., Sajjad, M., Shoaib, M. and Gilani, G. (2011) Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int. J. Appl. Basic Med. Res., 1: 93-6. [Crossref] [PubMed] [PMC]
40. Lu, J., Stewart, A.J, Sadler, P.J., Pinheiro, T.J. and Blindauer, C.A. (2008) Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochem. Soc. Trans., 36(6): 1317-1321. [Crossref] [PubMed]
41. Miller, E.A., Beasley, D.E., Dunn, R.R. and Archie, E.A. (2016) Lactobacilli dominance and vaginal pH: Why is the human vaginal microbiome unique? Front. Microbiol., 7: 1936. [Crossref] [PubMed] [PMC]
42. Aboul Enien, W.M. and El Metwally, H.A. (2005) Association of abnormal vaginal flora with increased cervical tumour necrosis factor-alpha and interferon-gamma levels in idiopathic infertility. Egypt J. Immunol., 12(2): 53-59. [PubMed]
43. Kaur, S. and Prabha, V. (2012) Infertility as a consequence of sperm agglutinating Staphylococcus aureus colonization in genital tract of female mice. PLoS One, 7(12): e52325. [Crossref] [PubMed] [PMC]
44. Pizzorno, J. (2015) Acidosis: An old idea validated by new research. Integr. Med. Clin. J., 14(1): 8-12.
45. Callaghan, M.J., McAuliffe, P., Rodgers, R.J., Hernandez-Medrano, J. and Perry, V.E.A. (2016) Subacute ruminal acidosis reduces sperm quality in beef bulls. J. Anim. Sci., 94: 3215-3228. [Crossref] [PubMed]
46. Henger, A., Tutt, P., Riesen, W.F., Hulter, H.N. and Krapf, R. (2000) Acid-base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients. J. Lab. Clin. Med., 136: 379-389. [Crossref] [PubMed]
47. Purdy, P.H. (2006) A review on goat sperm cryopreservation. Small Rumin. Res., 63(3): 215-225. [Crossref]
48. Sannat, C., Nair, A., Sahu, S.B., Sahasrabudhe, S.A., Kumar, A., Guptam A.K. and Shende, R.K. (2015) Critical sources of bacterial contamination and adoption of standard sanitary protocol during semen collection and processing in semen station. Vet. World, 8(5): 631-635. [Crossref] [PubMed] [PMC]
49. Shukla, M.K. (2005) Correlation of microbial load of cryopreserved semen with quality of neat and cryopreserved Murrah buffalo bull semen. Buffalo Bull., 24: 84-87.
50. Rao, T.K.S., Mohanty, T.K., Chauhan, I.S. and Patel, N.B. (2014) Critical control points for quality semen production and utilization: An overview. Wayamba J. Anim. Sci., 6: 794-810.