Open Access
Research (Published online: 31-03-2018)
22. ISMap02 element targeted nested polymerase chain in the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples of cattle and buffaloes
Mamta Rani, Deepti Narang, Dinesh Kumar, Mudit Chandra, Sikh Tejinder Singh and G. Filia
Veterinary World, 11(3): 397-401

Mamta Rani: Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
Deepti Narang: Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
Dinesh Kumar: Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
Mudit Chandra: Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
Sikh Tejinder Singh: Directorate of Livestock Farms, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
G. Filia: Animal Disease Research Centre, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.

doi: 10.14202/vetworld.2018.397-401

Share this article on [Facebook] [LinkedIn]

Article history: Received: 29-09-2017, Accepted: 21-02-2018, Published online: 31-03-2018

Corresponding author: Deepti Narang

E-mail: deeptivet@rediffmail.com

Citation: Rani M, Narang D, Kumar D, Chandra M, Singh ST, Filia G (2018) ISMap02 element targeted nested polymerase chain in the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples of cattle and buffaloes, Veterinary World, 11(3): 397-401.
Abstract

Background and Aim: Johne's disease is chronic granulomatous enteritis which affects ruminants. There are many diagnostic approaches for the detection of Mycobacterium avium subsp. paratuberculosis (MAP) of which molecular detection methods using various elements are less time consuming and more accurate. The present study was conducted using ISMap02 element for nested polymerase chain reaction (nPCR) based detection of MAP in fecal samples. The aim was to test the sensitivity and specificity of the ISMap02 element and also to use this element for the detection of MAP in fecal samples of cattle and buffaloes.

Materials and Methods: A total of 211 fecal samples of cattle and buffaloes from different herds around Ludhiana aged between 2 and 13 years were collected, and DNA extraction was done from these samples. The nPCR was carried out for the detection of MAP in fecal samples.

Results: The ISMap02 element was specific for the detection of MAP only and showed a sensitivity of detection of 7.6 fg/μL of the standard genomic DNA. Among the 211 fecal samples of cattle and buffaloes tested for the ISMap02 element, 18 samples (8.5%) were positive for MAP.

Conclusion: The ISMap02 element is specific and sensitive for the detection of MAP in various samples, and when used in nPCR format, it can increase the sensitivity of detection.

Keywords: ISMap02, Mycobacterium avium subsp. paratuberculosis, nested polymerase chain reaction, paratuberculosis.

References

1. Stevenson, K., Julio Alvarez Bakker, J.D., Biet, F., Juan, L., Denham, S., Dimareli, Z., Dohmann, K., Gerlach, G.F., Heron, I., Kopecna, M., May, L., Pavlik, I., Sharp, J.M., Thibault, V.C., Willemsen, P., Zadoks, R.N. and Greig, A. (2009) Occurrence of Mycobacterium avium subspecies paratuberculosis across host species and European countries with evidence for transmission between wildlife and domestic ruminants. BMC Microbiol., 9: 212. [Crossref]

2. Collins, M.T. (2003) Update on paratuberculosis: Epidemiology of Johne's disease and the biology of Mycobacterium paratuberculosis. Ir. Vet. J., 56: 565-574.

3. Ott, S.L., Wells, S.J. and Wagner, B.A. (1999) Herd-level economic losses associated with Johne's disease on US dairy operations. Prev. Vet. Med., 40: 179-192. [Crossref]

4. Garg, R., Patil, P.K., Singh, S.V., Sharma, S., Gandham, R.K., Singh, A.V., Filia, G., Singh, P.K., Jayaraman, S., Gupta, S., Chaubey, K.K., Tiwari, R., Saminathan, M., Dhama, K. and Sohal, J.S. (2015) Comparative evaluation of different test combinations for diagnosis of Mycobacterium avium subspecies paratuberculosis infecting dairy herds in India. Biomed. Res. Int., 2015: 983978. [Crossref] [PubMed] [PMC]

5. Giese, S.B. and Ahrens, P. (2000) Detection of Mycobacterium avium subsp. paratuberculosis in milk from clinically affected cows by PCR and culture. Vet. Microbiol., 77: 291-297. [Crossref]

6. Slana, I., Liapi, M., Moravkova, M., Kralova, A. and Pavlik, I. (2009). Mycobacterium avium subsp. paratuberculosis in cow bulk tank milk in Cyprus detected by culture and quantitative IS900 and F57 real-time PCR. Prev. Vet. Med., 89: 223-226. [Crossref] [PubMed]

7. Stevenson, K. (2015) Genetic diversity of Mycobacterium avium subspecies paratuberculosis and the influence of strain type on infection and pathogenesis: A review. Vet. Res., 46: 64. [Crossref]

8. Fang, Y., Wu, W.H., Pepper, J.L., Larsen, J.L., Marras, S.A., Nelson, E.A., Epperson, W.B. and Christopher-Hennings, J. (2002) Comparison of real-time, quantitative PCR with molecular beacons to nested PCR and culture methods for detection of Mycobacterium avium subsp. paratuberculosis in bovine fecal samples. J. Clin. Microbiol., 40: 287-291. [Crossref]

9. Groenendaal, H. and Galligan, D.T. (2003) Economic consequences of control programs for paratuberculosis in midsize dairy farms in the United States. J. Am. Vet. Med. Assoc., 223: 1757-1763. [Crossref] [PubMed]

10. Ronai, Z., Csivincsik, A., Gyuranecz, M., Kreizinger, Z., Dan, A. and Janosi, S. (2015) Molecular analysis and MIRU-VNTR typing of Mycobacterium avium subsp. paratuberculosis strains from various sources. J. Appl. Microbiol., 118: 275-283. [Crossref] [PubMed]

11. Wolf, R., Orsel, K., De Buck, J. and Barkema, H.W. (2015) Calves shedding Mycobacterium avium subspecies paratuberculosis are common on infected dairy farms. Vet. Res., 46: 71. [Crossref] [PubMed] [PMC]

12. Singh, S.V., Singh, P.K., Kumar, N., Gupta, S., Chaubey, K.K., Singh, B., Srivastav, A., Yadav, S. and Dhama, K. (2015). Evaluation of goat-based "indigenous vaccine" against bovine Johne's disease in endemically infected native cattle herds. Indian J. Exp. Biol., 53: 16-24. [PubMed]

13. Tewari, D., Hovingh, E., Linscott, R., Martel, E., Lawrence, J., Wolfgang, D. and Griswold, D. (2014) Mycobacterium avium subsp. paratuberculosis antibody response, fecal shedding, and antibody cross-reactivity to Mycobacterium bovis in M. avium subsp. paratuberculosis-infected cattle herds vaccinated against Johne's disease. Clin. Vaccine Immunol., 21: 698-703. [Crossref]

14. Khare, S., Ficht, T.A., Santos, R.L., Romano, J., Ficht, A.R., Zhang, S., Grant, I.R., Libal, M., Hunter, D. and Adams, L.G. (2004). Rapid and sensitive detection of Mycobacterium avium subsp. paratuberculosis in bovine milk and feces by a combination of immunomagnetic bead separation-conventional PCR and real-time PCR. J. Clin. Microbiol., 42: 1075-1081. [Crossref] [PubMed] [PMC]

15. Kim, S.G., Shin, S.J., Jacobson, R.H., Miller, L.J., Harpending, P.R., Stehman, S.M., Rossiter, C.A. and Lein, D.A. (2002) Development and application of quantitative polymerase chain reaction assay based on the ABI 7700system (TaqMan) for detection and quantification of Mycobacterium avium subsp. paratuberculosis. J. Vet. Diagn. Invest., 14: 126-131. [Crossref] [PubMed]

16. Singh, S.V., Sohal, J.S., Kumar, N., Gupta, S., Chaubey, K.K., Rawat, K.D., Chakraborty, S., Tiwari, R. and Dhama, K. (2014) Recent approaches in diagnosis and control of mycobacterial infections with special reference to Mycobacterium avium subspecies paratuberculosis. Adv. Anim. Vet. Sci., 2: 1-12. [Crossref]

17. Bull, T.J., Hermon-Taylor, J., Pavlik, I., El-Zaatari, F. and Tizard, M. (2000) Characterization of IS900 loci in Mycobacterium avium subsp. paratuberculosis and development of multiplex PCR typing. Microbiology, 146: 2185-2197. [Crossref] [PubMed]

18. Stabel, J.R. and Bannantine, J.P. (2005) Development of a nested PCR method targeting a unique multicopy element, ISMap02, for detection of Mycobacterium avium subsp. paratuberculosis in fecal samples. J. Clin. Microbiol., 43: 4744-4750. [Crossref]

19. Stabel, J.R. and Whitlock, R.H. (2001) An evaluation of a modified interferon-gamma assay for the detection of paratuberculosis in dairy herds. Vet. Immunol. Immunopathol., 79: 69-81. [Crossref]

20. Mobius, P., Hotzel, H., Rassbach, A. and Kohler, H. (2008) Comparison of 13 single round and nested PCR assays targeting IS900, ISMav2, f57 and locus 255 for detection of Mycobacterium avium subsp. paratuberculosis. Vet. Microbiol., 126: 324-333. [Crossref]

21. Konomopoulos, I., Gazouli, M., Pavlik, I., Bartos, M., Zaharatos, P., Xylouri, E., Papalambros, E. and Gorgoulis, V. (2004) Comparative evaluation of PCR assays for the robust molecular detection of Mycobacterium avium subsp. paratuberculosis. J. Microb. Methods, 56: 315-321. [Crossref] [PubMed]

22. Rajeev, S., Zhang, Y., Sreevatsan, S., Motiwala, A.S. and Byrum, B. (2005) Evaluation of multiple genomic targets for identification and confirmation of Mycobacterium avium subsp. paratuberculosis isolates using real-time PCR. Vet. Microbiol., 105: 215-221. [Crossref] [PubMed]

23. Vansnick, E., De Rijk, P., Vercammen, F., Geysen, D., Rigouts, L. and Portaels, F. (2004) Newly developed primers for the detection of Mycobacterium avium subspecies paratuberculosis. Vet. Microbiol., 100: 197-204. [Crossref] [PubMed]

24. Inglis, G.D. and Kalischuk, L.D. (2003) Use of PCR for direct detection of Campylobacter species in bovine feces. Appl. Environ. Microbiol., 69: 3435-3447. [Crossref] [PubMed] [PMC]