doi: 10.14202/vetworld.2018.1445-1453
Share this article on [Facebook] [LinkedIn]
Article history: Received: 22-05-2018, Accepted: 21-08-2018, Published online: 18-10-2018
Corresponding author: Manal H. G. Kanaan
E-mail: manalhadi73@yahoo.com
Citation: Kanaan MHG (2018) Antibacterial effect of ozonated water against methicillin-resistant Staphylococcus aureus contaminating chicken meat in Wasit Province, Iraq, Veterinary World, 11(10): 1445-1453.Background and Aim: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most recognized "superbugs" and a common cause of community-associated and nosocomial infections; furthermore, when chicken meat is considered a good growth medium for S. aureus to make a plausible vehicle to propagate MRSA, then this study was conducted to evaluate the efficiency of ozonated water (0.5 ppm) in the elimination or reduction of MRSA contaminating fresh and frozen chicken meat sold in local markets in the Wasit Province.
Materials and Methods: A total of 72 samples of fresh and frozen chicken meat were randomly collected from dissimilar native markets: Fresh chicken meat (n=32) and frozen chicken meat (n=40). Isolation and identification of MRSA isolates were conducted using standard bacteriological, biochemical, RapID™ Staph Plus System (Remel, R8311009), and latex agglutination tests such as Dry SPOT Staphytect Plus (Oxoid, DR0100M) and PBP2' Test Kit (Oxoid, DR0900A). The generation of ozone (O3) was carried out using O3 generator (A2Z/AQUA-6, USA), and its concentration (ppm) in water was determined using CHE-Mets®-Kit, USA.
Results: A total of 39 (54.2%) of 72 fresh and frozen chicken meat were positive for S. aureus; of those 39 positive samples, 13 (33.3%) were identified as MRSA. The antibiotic sensitivity test results revealed that all MRSA isolates had multiple resistance to at least four antimicrobial agents for which these isolates had 12 antibiotic resistance patterns. Results of O3 treatment in MRSA isolate contaminating 13 of both fresh and frozen chicken meat samples showed that, after treatment with ozonated water (0.5 ppm/4°C), the overall negative samples were 23.1% and 69.2% for 30 and 45 min, respectively. The decrease in the percentage of positive samples was very significant from a public health perspective. Furthermore, the antimicrobial efficacy of ozonated water (0.5 ppm) on the reduction of the MRSA count (log10 colony-forming units [CFU]/ml) was assessed in four positive samples of fresh and frozen chicken meat, and the results revealed that, after treatments, the overall reduction was 2-4 log10 (CFU/ml) after 45 min. This reduction is highly significant from a public health perspective.
Conclusion: From the data obtained from this study, it can be concluded that fresh and frozen chicken meat sold in the different markets of Wasit Province was highly contaminated by S. aureus during the study period with a total prevalence of 54.2%; among those, 33.3% were recognized as MRSA. Under the conditions described in the present study, O3 at the concentration of 0.5 ppm is highly effective in reducing the number of MRSA-positive samples and the number decreased with increased exposure time to ozonated water at the same concentration. These findings indicated that O3 treatment might constitute the basis for an alternative method to reduce meat contamination with foodborne pathogens such as MRSA.
Keywords: antibacterial effect, chicken meat, methicillin-resistant Staphylococcus aureus, ozonated water, Wasit Province.
1. Rodriguez-Lazaro, D., Elena-Alexandra, E.A., Patricia, P.G., David, G.D., Fernandez-Natal, I., Dominguez-Gil, M., Eiros-Bouza, J.M., Martin, W.M., Nicolau, A.I. and Hernandez, M. (2017) Detection and characterization of Staphylococcus aureus and Methicillin-resistant S. aureus in foods confiscated in EU borders. Front Microbiol., 8(1344): 1-10. [Crossref]
2. Peton, V. and Le Loir, Y. (2014) Staphylococcus aureus in veterinary medicine. Infect. Gen. Evol., 21(1): 602-615. [Crossref] [PubMed]
3. Hennekinne, J.A., De Buyser, M.L. and Dragacci, S. (2012) Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev., 36(4): 815-836. [Crossref] [PubMed]
4. Dehkordi, F.S., Gandomi, H., Basti, A.A., Misaghi, A. and Rahimi, E. (2017) Phenotypic and genotypic characterization of antibiotic resistance of methicillin resistant Staphylococcus aureus isolated from hospital food. Antimicrob. Resist. Infect. Control, 6(104): 1-11.
5. Hasanpour, D.A., Khaji, L., Sakhaei, S.M.H., Mashak, Z., Safarpoor, D.F. and Safaree, Y. (2017) One-year prevalence of antimicrobial susceptibility pattern of Methicillin-resistant Staphylococcus aureus recovered from raw meat. Trop. Biomed., 34(2): 396-404.
6. Hasman, H., Moodley, A., Guardabassi, L., Stegger, M., Skov, R.L. and Aarestrup, F.M. (2010) Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet. Microbiol., 141(3-4): 326-31. [Crossref] [PubMed]
7. Verhegghe, M., Crombe, F., Luyckx, K., Haesebrouck, F., Butaye, P. and Herman, L. (2016) Prevalence and genetic diversity of livestock-associated Methicillin-resistant Staphylococcus aureus on Belgian pork. J. Food Prot., 79(1): 82-89. [Crossref] [PubMed]
8. Hanson, B.M., Dressler, A.E., Harper, A.L., Scheibel, R.P., Wardyn, S.E., Roberts, L.K., Kroeger, J.S. and Smith, T.C. (2011) Prevalence of Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J. Infect. Public Health, 4(4): 169-174. [Crossref] [PubMed]
9. Vandendriessche, S., Vanderhaeghen, W., Larsen, J., Mendonca, R., Hallin, M., Butaye, P., Hermans, K., Haesebrouck, F. and Denis, O. (2014) High genetic diversity of methicillin-susceptible Staphylococcus aureus (MSSA) from humans and animals on livestock farms and presence of SCCmec remnant DNA in MSSA CC398. J. Antimicrob. Chemother., 69(2): 355-362. [Crossref] [PubMed]
10. Smith, T.C. and Pearson, N. (2011) The emergence of Staphylococcus aureus ST398. Vector Borne Zoonotic Dis., 11(4): 327-339. [Crossref] [PubMed]
11. Zhang, H, Wu, J. and Guo, X. (2016) Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness., 5(1): 39-48. [Crossref]
12. EL-Dahshan, H.A., Hafez, T.A. and EL-Ghayaty, H.A. (2013) Effect of ozone on preservation of chilled chicken. Assiut Vet. Med. J., 59(136): 22-26.
13. Muhlisin, Y.C., Ji, H.C., Tae-Wook, H. and Sung, K. (2015) Bacterial counts and oxidative properties of chicken breast inoculated with Salmonella typhimurium exposed to gaseous ozone. J. Food Saf., 35(1): 137-144. [Crossref]
14. Kronn, T.G. (2013) Non Thermal Plasma Treatment of Packaged Broiler Breast Fillets to Reduce Natural microflora and Campylobacter jejuni. MSC Thesis College of Science. University of Georgia.
15. Khadre, M.A., Yousef, A.E. and Kim, J.G. (2001) Microbiological aspects of ozone applications in food: A review. J. Food Sci., 66(9): 1242-1252. [Crossref]
16. Cardenas, F.C., Andres, S., Giannuzi, L. and Zaritzky, N. (2011) Antimicrobial action and effects on beef quality attributes of a gaseous ozone treatment at refrigeration temperatures. Food Control, 22(8): 1442-1447. [Crossref]
17. Muhlisin, D., Utama, T., Lee, J.H., Choi, J.H. and Lee, S.K. (2016) Effects of gaseous ozone exposure on bacterial counts and oxidative properties in chicken and duck breast meat. Korean J. Food Sci. Anim. Resour., 36(3): 405-411. [Crossref] [PubMed] [PMC]
18. Mahapatra, A.K., Muthukumarappan, K. and Julson, J.L. (2005) Applications of ozone, bacteriocins and irradiation in food processing: A review. Crit. Rev. Food Sci. Nutr., 45(6): 447-461. [Crossref] [PubMed]
19. Kim, J.G., Yousef, A. and Chism, G. (1999) Use of ozone to inactivate microorganisms on lettuce. J. Food Saf., 19(1): 17-33. [Crossref]
20. Restaino, L., Erampton, E.W. and Hemphill, J.B. (1995) Efficacy of ozonated water against various food-related microorganisms. Appl. Environ. Microbiol., 61(9): 3471-3475. [PubMed] [PMC]
21. Gabler, F.M., Smilanick, J.L., Mansour, M.F. and Karaca, H. (2010) Influence of fumigation with high concentrations of ozone gas on post-harvest gray mold and fungicide residues on table grapes. Postharvest Biol. Technol., 55(2): 85-90. [Crossref]
22. International Standardization Organization (ISO) 6888-1. (1999) Microbiology of Food and Animal Feeding Stuffs - Horizontal Method for the Enumeration of Coagulase Positive Staphylococci (Staphylococcus aureus and other species)-Part 1: Technique using Baird-Parker Agar medium. International Standardization Organization (ISO), Geneva.
23. Food and Drug Administration (FDA). (2000) Staphylococcus aureus. In: Bad Bug Book. Foodborne Pathogenic Microorganisms and Natural Toxins Handbook. Ch. 3. Centre for Food Safety and Nutrition, Atlanta, GA, USA.
24. Bacteriological Analytical Manual (BAM). (2013) Staphylococcus aureus. Ch. 12. U.S. Food and Drug Administration (FDA), Atlanta, GA, USA.
25. Kanaan, M.H.G. and AL-Shammary, A.H.A. (2013) Detection of methicillin or multidrug-resistant Staphylococcus aureus (MRSA) in locally produced raw milk and soft cheese in Baghdad markets. Iraqi J. Vet. Med., 37(2): 226-231.
26. Fijalkowski, K., Peitler, D. and Karakulska, J. (2016) Staphylococci isolated from ready-to-eat meat - Identification, antibiotic resistance and toxin gene profile. Int. J. Food Microbiol., 238(1): 113-120. [Crossref] [PubMed]
27. Oxoid-Remel. (2016) Laboratory Manual for Media and Diagnostic Kits.
28. Clinical and Laboratory Standards Institute (CLSI). (2015) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI Document M100-S25. Clinical and Laboratory Standards Institute, Wayne.
29. Abdulateef, Z.A. (2017) Assessment the availability of ozonated water on the bioavailability of deltamethrin in treated sheep's meat. Int. J. Adv. Res. Biol. Sci., 3(11): 130-136.
30. Miles, A.A. and Misra, S.S. (1938) The estimation of the bactericidal power of the blood. J. Hyg., 38(6): 732-749. [Crossref]
31. Sergelidis, D. and Angelidis, A.S. (2017) Methicillin-resistant Staphylococcus aureus: A controversial food-borne pathogen. Lett. Appl. Microbiol., 64(6): 409-418. [Crossref] [PubMed]
32. Wendlandt, S., Schwarz, S. and Silley, P. (2013) Methicillin-resistant Staphylococcus aureus: A foodborne pathogen? Annu. Rev. Food Sci. Technol., 4(1): 117-139. [Crossref] [PubMed]
33. Krupa, P., Bystron, J., Bania, J., Podkowik, M., Empel, J. and Mroczkowska, A. (2014) Genotypes and oxacillin resistance of Staphylococcus aureus from chicken and chicken meat in Poland. J. Poult. Sci., 93(12): 3179-3186. [Crossref] [PubMed]
34. Osman, K., Badr, J., Al-Maary, K.S., Moussa, I.M.I., Hessain, A., Amin, G.Z.M.S., Abo-Shama, U.H., Orabi, A. and Saad, S. (2016) Prevalence of the antibiotic resistance genes in coagulase-positive and negative-Staphylococcus in chicken meat retailed to consumers. Front. Microbiol., 7(222): 1-12. [Crossref]
35. Ciolacu, L., Stessl, B., Bolocan, A.S., Oniciuc, E.A., Wagner, M. and Rychli, K. (2016) Tracking foodborne pathogenic bacteria in raw and ready-to-eat food illegally sold at the Eastern EU border. Foodborne Pathog. Dis., 13(3): 148-155. [Crossref] [PubMed]
36. Waters, A.E., Contente-Cuomo, T., Buchhagen, J., Liu, C.M., Watson, L., Pearce, K., Foster, J.T., Bowers, J., Driebe, E.M., Engelthaler, D.M., Keim, P.S. and Price, L.B. (2011) Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis., 52(10): 1227-1230. [Crossref] [PubMed] [PMC]
37. Weese, J.S., Avery, B.P. and Reid-Smith, R.J. (2010) Detection and quantification of Methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett. Appl. Microbiol., 51(3): 338-342. [Crossref] [PubMed]
38. Febler, A.T., Kadlec, K., Hassel, M., Hauschild, T., Eidam, C., Ehricht, R., Monecke, S. and Schwarz, S. (2011) Characterization of Methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl. Environ. Microbiol., 77(20): 7151-7157. [Crossref] [PubMed] [PMC]
39. Costa, W.L.R., Ferreira, J.S., Carvalho, J.S., Cerqueira, E.S., Oliveira, L.C. and Almeida, R.C.D.C. (2015) Methicillin-resistant Staphylococcus aureus in raw meats and prepared foods in public hospitals in Salvador, Bahia. Braz. J. Food Sci., 80(1): 147-150. [Crossref] [PubMed]
40. Centers for Diseases Control and Prevention (CDC). (2013) Antibiotic Resistance Threats in the United States. Available from: https://www.cdc.gov/drugresistance/food.html. Last accessed on 21-07-2018.
41. Ventola, CL. (2015) The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther., 40(4): 277-283.
42. Chantziaras, I., Boyen, F., Callens, B. and Dewulf, J. (2014) Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother., 69(3): 827-834. [Crossref] [PubMed]
43. Santestevan, N.A., Zvoboda, D.A., Prichula, J., Pereira, R.I., Wachholz, G.R., Cardoso, L.A., de Moura, T.M., Medeiros, A.W., de Amorin, D.B., Tavares, M., d'Azevedo, P.A., Franco, A.C., Frazzon, J. and Frazzon, A.P.G. (2015) Antimicrobial resistance and virulence factor gene profiles of Enterococcus spp. Isolates from wild Arctocephalus australis (South American fur seal) and Arctocephalus tropicalis (Subantarctic fur seal). World J. Microbiol. Biotechnol., 31(12): 1935-1946. [Crossref] [PubMed]
44. Elmal, M. and Can, H.Y. (2018) The prevalence, vancomycin resistance and virulence gene profiles of Enterococcus species recovered from different foods of animal origin. Vet. Arhiv., 88(1): 111-124. [Crossref]
45. Nelson, J.M., Chiller, T.M., Powers, J.H. and Angulo, F.J. (2007) Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: A public health success story. Clin. Infect. Dis., 44(7): 977-980. [Crossref] [PubMed]
46. Saenz, Y., Zarazaga, M., Lantero, M., Gastanares, M.J., Baquero, F. and Torres, C. (2000) Antibiotic resistance in Campylobacter strains isolated from animals, foods, and humans in Spain in 1997-1998. Antimicrob. Agents Chemother., 44(2): 267-271. [Crossref]
47. Jackson, C.R., Davis, J.A. and Barrett, J.B. (2013) Prevalence and characterization of Methicillin-resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. J. Clin. Microbiol., 51(4): 1199-1207. [Crossref] [PubMed] [PMC]
48. Kanaan, M.H.G. (2013) Isolation and Identification of Methicillin resistant Staphylococcus aureus (MRSA) in Locally Produced raw Milk and White Soft Cheese in Baghdad Province. MSc Thesis College of Veterinary Medicine, University of Baghdad.
49. Levy, S.B. (2002) Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother., 49(1): 25-30. [Crossref]
50. Daka, D., Silassie, S. and Yihdego, D. (2012) Antibiotic-resistance Staphylococcus aureus isolated from cow's milk in the Hawassa area, South Ethiopia. Ann. Clin. Microbiol. Antimicrob., 11(26): 1-6. [Crossref]
51. Momtaz, H., Dehkordi, F.S., Rahimi, E., Asgarifar, A. and Momeni, M. (2013) Virulence genes and antimicrobial resistance profiles of Staphylococcus aureus isolated from chicken meat in Isfahan province, Iran. J. Appl. Poult. Res., 22(4): 913. [Crossref]
52. Rong, D., Wu, Q., Xu, M., Zhang, J. and Yu, S. (2017) Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Staphylococcus aureus from retail aquatic products in China. Front. Microbiol., 8(714): 1-10. [Crossref]
53. Patil, S. (2010) Efficacy of Ozone and Ultrasound for Microbial Reduction in Fruit Juice. Doctoral Dissertation. College of Sciences and Health. Dublin Institute of Technology.
54. Jindal, V., Waldrou, A.L., Forsythe, R.H. and Miller, M.J. (1995) Ozone and improvement of quality and shelf life of poultry producer. J. Appl. Poult. Res., 4(3): 239-242. [Crossref]
55. Hecer, C., Balci, F. and Udum, C.D. (2007) The effects of ozone and chlorine applications on microbiological quality of chickens during processing. J. Biol. Environ. Sci., 1(3): 131-138.
56. de Boer, E.L., van Elzelingen-Dekker, C.M., van Rheenen-Verberg, M.F. and Spanjaard, L.M.D. (2006) Use of gaseous ozone for eradication of methicillin-resistant Staphylococcus aureus from the home environment of a colonized hospital employee. Infect. Control Hosp. Epidemiol., 27(10): 1120-1122. [Crossref] [PubMed]
57. Burgassi, S., Zanardi, I., Travagli, V., Montomoli, E. and Bocci, V. (2009) How much ozone bactericidal activity is compromised by plasma components? J. Appl. Microbiol., 106(5): 1715-1721. [Crossref] [PubMed]
58. Song, M., Zeng, Q., Xiang, Y., Gao, L., Huang, J., Jinhua, H.J., Wu, K. and Lu, J. (2018) The antibacterial effect of topical ozone on the treatment of MRSA skin infection. Mol. Med. Rep., 17(2): 2449-2455. [PubMed]