doi: 10.14202/vetworld.2018.1404-1408
Share this article on [Facebook] [LinkedIn]
Article history: Received: 14-05-2018, Accepted: 20-08-2018, Published online: 12-10-2018
Corresponding author: Latiffah Hassan
E-mail: latiffah@upm.edu.my
Citation: Sadiq MA, Hassan L, Aziz SA, Zakaria Z, Musa HI, Amin MM (2018) The relationship between bacterial sources and genotype to the antimicrobial resistance pattern of Burkholderia pseudomallei, Veterinary World, 11(10): 1404-1408.Background: Melioidosis is a fatal emerging infectious disease of both man and animal caused by bacteria Burkholderia pseudomallei. Variations were suggested to have existed among the different B. pseudomallei clinical strains/genotypes which may implicate bacterial susceptibility and resistance toward antibiotics.
Aim: This study was designed to determine whether the phenotypic antibiotic resistance pattern of B. pseudomallei is associated with the source of isolates and the genotype.
Materials and Methods: A collection of 111 B. pseudomallei isolates from veterinary cases of melioidosis and the environments (soil and water) were obtained from stock cultures of previous studies and were phylogenetically characterized by multilocus sequence typing (ST). The susceptibility to five antibiotics, namely meropenem (MEM), imipenem, ceftazidime (CAZ), cotrimoxazole (SXT), and co-amoxiclav (AMC), recommended in both acute and eradication phases of melioidosis treatment were tested using minimum inhibitory concentration antibiotics susceptibility test.
Results: Majority of isolates were susceptible to all antibiotics tested while few resistant strains to MEM, SXT, CAZ, and AMC were observed. Statistically significant association was found between resistance to MEM and the veterinary clinical isolates (p<0.05). The likelihood of resistance to MEM was significantly higher among the novel ST 1130 isolates found in veterinary cases as compared to others.
Conclusion: The resistance to MEM and SXT appeared to be higher among veterinary isolates, and the novel ST 1130 was more likely to be resistant to MEM as compared to others.
Keywords: animals, antimicrobial, Burkholderia pseudomallei, environmental, resistance, sequence types, veterinary isolates.
1. Currie, B.J., Dance, D.A. and Cheng, A.C. (2008) The global distribution of Burkholderia pseudomallei and melioidosis: An update. Trans. Roy. Soc. Trop. Med. Hyg., 102 Suppl 1: S1-S4. [Crossref]
2. Dance, D. (2014) Treatment and prophylaxis of melioidosis. Int. J. Antimicrob. Agents, 43(4): 310-318. [Crossref] [PubMed] [PMC]
3. Scott, A.E., Christ, W.J., George, A.J. Stokes, M.G., Lohman, G.J., Guo, Y., Jones, M., Titball, R.W., Atkins, T.P. and Campbell, A.S. (2016) Protection against experimental melioidosis with a synthetic manno-heptopyranose hexasaccharide glycoconjugate. Bioconjug. Chem., 27(6): 1435-1446. [Crossref] [PubMed] [PMC]
4. Sprague, L. and Neubauer, H. (2004) Melioidosis in animals: A review on epizootiology, diagnosis and clinical presentation. J. Vet. Med., 51(7): 305-320. [Crossref] [PubMed]
5. Thibault, F., Hernandez, E., Vidal, D., Girardet, M. and Cavallo, J.D. (2004) Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J. Antimicrob. Chemother., 54(6): 1134-1138. [Crossref] [PubMed]
6. Podin, Y., Sarovich, D.S., Price, E.P., Kaestli, M., Mayo, M., Hii, K., Ngian, H., Wong, S., Wong, I. and Wong, J. (2014) Burkholderia pseudomallei Isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides. J. Antimicrob. Chemother., 58(1): 162-166. [Crossref] [PubMed] [PMC]
7. Khosravi, Y., Vellasamy, K.M., Mariappan, V., Ng, S.L. and Vadivelu, J. (2014) Antimicrobial susceptibility and genetic characterisation of Burkholderia pseudomallei isolated from Malaysian patients. Sci. World J., 2014: 1-9.
8. Musa, H., Hassan, L., Rachmat, R.F.N., Chandrawathani, P., Zunita, Z. and Saleha, A.A. (2012) Seroprevalence of melioidosis among livestock in Malaysia from 2000-2009. Malays. J. Vet. Res., 3(2): 41-46.
9. Pagalavan, L. (2005) Melioidosis: The Johor Bahru experience. Med. J. Malays., 60(5): 599. [PubMed]
10. Musa, H.I., Hassan, L., Shamsuddin, Z., Panchadcharam, C., Zakaria, Z., Abdul, A.S. and Rachmat, R.F.N. (2015) Case-control investigation on the risk factors of melioidosis in small ruminant farms in Peninsular Malaysia. J. Appl. Microbiol., 119(2): 1-11. [Crossref] [PubMed]
11. Brook, M., Currie, B. and Desmarchelier, P. (1997) Isolation and identification of Burkholderia pseudomallei from soil using selective culture techniques and the polymerase chain reaction. J. Appl. Microbiol., 82: 589-596. [Crossref] [PubMed]
12. Lipsitz, R., Garges, S., Aurigemma, R., Baccam, P., Blaney, D.D., Cheng, A.C., Currie, B.J., Dance, D., Gee, J.E. and Larsen, J. (2012) Workshop on treatment of and post-exposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection. 2010. Emerg. Infect. Dis., 18(12): e2. [Crossref] [PubMed] [PMC]
13. Clinical and Laboratory Standards Institute (CLSI). (2014) Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Second Informational Supplement. Vol. 2014. CLSI Document M100-S24. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania 19087 USA. p1.
14. Peat, J. and Barton, B. (2005) Medical Statistics: A Guide to Data Analysis and Critical Appraisal. Wiley. 2005, Blackwell Publishing Ltd, 9600 Garsington Road, BMJ Books is an Imprint of the BMJ Publishing Group Limited., Oxford OX4 2DQ, UK, Chichester, GBR. [Crossref]
15. Inglis, T.J. (2010) The treatment of melioidosis. Pharmaceuticals, 3(5): 1296-1303. [Crossref] [PubMed] [PMC]
16. Choy, J.L., Mayo, M., Janmaat, A. and Currie, B.J. (2000) Animal melioidosis in Australia. Acta Trop., 74(2): 153-158. [Crossref]
17. Ahmad, N., Hashim, R. and Mohd, N.A. (2013) The in vitro antibiotic susceptibility of Malaysian isolates of Burkholderia pseudomallei. Int. J. Microbiol., 2013: 1-7. [Crossref] [PubMed] [PMC]
18. Piliouras, P., Ulett, G.C., Ashhurst-Smith, C., Hirst, R.G. and Norton, R.E. (2002) Comparison of antibiotic susceptibility testing methods for cotrimoxazole with Burkholderia pseudomallei. Int. J. Antimicrob Agents, 19(5): 427-429. [Crossref]
19. Sivalingam, S.P., Sim, S.H., Aw, L.T. and Ooi, E.E. (2006) Antibiotic susceptibility of 50 clinical isolates of Burkholderia pseudomallei from Singapore. J. Antimicrob. Chemother., 58(5): 1102-1103. [Crossref] [PubMed]
20. Saiprom, N., Amornchai, P., Wuthiekanun, V., Day, N.P., Limmathurotsakul, D., Peacock, S.J. and Chantratita, N. (2015) Trimethoprim-sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei from Thailand. Int. J. Antimicrob. Agents, 45(5): 557. [Crossref] [PubMed] [PMC]
21. Dance, D.A.B., Davong, V., Soeng, S., Phetsouvanh, R., Newton, P.N. and Turner, U. (2014) Trimethoprim-sulfamethoxazole resistance in Burkholderia pseudomallei. Int. J. Antimicrob. Agents, 44: 368-369. [Crossref] [PubMed] [PMC]
22. Wuthiekanun, V., Amornchai, P., Saiprom, N., Chantratita, N., Chierakul, W., Koh, G.C., Chaowagul, W., Day, N.P., Limmathurotsakul, D. and Peacock, S.J. (2011) Survey of antimicrobial resistance in clinical Burkholderia pseudomallei isolates over two decades in Northeast Thailand. J. Antimicrob. Chemother., 55(11): 5388-5391. [Crossref] [PubMed] [PMC]
23. Jenney, A.W., Lum, G., Fisher, D.A. and Currie, B.J. (2001) Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int. J. Antimicrob. Agents, 17(2): 109-113. [Crossref]
24. Papp-Wallace, K.M., Taracila, M.A., Gatta, J.A., Ohuchi, N., Bonomo, R.A. and Nukaga, M. (2013) Carbapenems: Past, present, and future. J. Antimicrob. Chemother., 55(11): 4943-4960. [Crossref] [PubMed] [PMC]
25. Rodriguez-Martinez, J.M., Poirel, L. and Nordmann, P. (2009) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother., 53(11): 4783-4788. [Crossref] [PubMed] [PMC]
26. Shigemoto, N., Kuwahara, R., Kayama, S., Shimizu, W., Onodera, M., Yokozaki, M., Hisatsune, J., Kato, F., Ohge, H. and Sugai, M. (2012) Emergence in Japan of an imipenem-susceptible, meropenem-resistant Klebsiella pneumoniae carrying bla IMP-6. Diagn. Microbiol. Infect. Dis., 72(1): 109-112. [Crossref] [PubMed]
27. Pragasam, A.K., Raghanivedha, M., Anandan, S. and Veeraraghavan, B. (2016) Characterization of Pseudomonas aeruginosa with discrepant carbapenem susceptibility profile. Ann. Clin. Microbiol. Antimicrob., 15(1): 1. [Crossref] [PubMed] [PMC]
28. Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H. and Pittet, D. (2012) Ready for a world without antibiotics? The pensieres antibiotic resistance call to action. Antimicrob. Resist. Infect. Contr., 1(1): 1. [Crossref] [PubMed] [PMC]
29. Nobrega, D.B. and Brocchi, M. (2014) An overview of extended-spectrum beta-lactamases in veterinary medicine and their public health consequences. J. Infect. Dev. Ctries., 8(8): 954-960. [Crossref] [PubMed]