Open Access
Research (Published online: 19-04-2019)
14. Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia
Meutia Hayati, Agustin Indrawati, Ni Luh Putu Ika Mayasari, Istiyaningsih Istiyaningsih and Neneng Atikah
Veterinary World, 12(4): 578-583

Meutia Hayati: Division of Medical Microbiology, Faculty of Veterinary Medicine, Bogor Agricultural University-West Java, Indonesia; Division of Bacteriology, National Veterinary Drug Assay Laboratory, Gunungsindur Bogor-West Java, Indonesia.
Agustin Indrawati: Division of Medical Microbiology, Faculty of Veterinary Medicine, Bogor Agricultural University-West Java, Indonesia.
Ni Luh Putu Ika Mayasari: Division of Medical Microbiology, Faculty of Veterinary Medicine, Bogor Agricultural University-West Java, Indonesia.
Istiyaningsih Istiyaningsih: Division of Bacteriology, National Veterinary Drug Assay Laboratory, Gunungsindur Bogor-West Java, Indonesia.
Neneng Atikah: Division of Bacteriology, National Veterinary Drug Assay Laboratory, Gunungsindur Bogor-West Java, Indonesia.

doi: 10.14202/vetworld.2019.578-583

Share this article on [Facebook] [LinkedIn]

Article history: Received: 22-10-2018, Accepted: 01-03-2019, Published online: 19-04-2019

Corresponding author: Meutia Hayati

E-mail: meutiakhoir@yahoo.com

Citation: Hayati M, Indrawati A, Mayasari NLPI, Istiyaningsih I, Atikah N (2019) Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia, Veterinary World, 12(4): 578-583.
Abstract

Background and Aim: Klebsiella pneumoniae is one of the respiratory disease agents in human and chicken. This bacterium is treated by antibiotic, but this treatment may trigger antibiotic resistance. Resistance gene in K. pneumoniae may be transferred to other bacteria. One of the known resistance genes is extended-spectrum β-lactamase (ESBL). This research aimed to study K. pneumoniae isolated from chicken farms in East Java, Indonesia, by observing the antibiotic resistance pattern and detect the presence of ESBL coding gene within the isolates.

Materials and Methods: A total of 11 K. pneumoniae isolates were collected from 141 chicken cloacal swabs from two regencies in East Java. All isolates were identified using the polymerase chain reaction method. Antimicrobial susceptibility was determined by agar dilution method on identified isolates, which then processed for molecular characterization to detect ESBL coding gene within the K. pneumoniae isolates found.

Results: The result of antibiotic sensitivity test in 11 isolates showed highest antibiotic resistance level toward ampicillin, amoxicillin, and oxytetracycline (100%, 100%, and 90.9%) and still sensitive to gentamicin. Resistance against colistin, doxycycline, ciprofloxacin, and enrofloxacin is varied by 90.9%, 54.5%, 27.3%, and 18.2%, respectively. All isolates of K. pneumoniae were classified as multidrug resistance (MDR) bacteria. Resistance gene analysis revealed the isolates harbored as blaSHV (9.1%), blaTEM (100%), and blaCTX-M (90.9%).

Conclusion: All the bacterial isolates were classified as MDR bacteria and harbored two of the transmissible ESBL genes. The presence of antibiotic resistance genes in bacteria has the potential to spread its resistance properties.

Keywords: antibiotic resistance, chicken, extended-spectrum β-lactamase, Klebsiella pneumoniae.

References

1. Fielding, B.C., Mnabisa, A., Gouws, P.A. and Morris, T. (2012) Antimicrobial-resistant Klebsiella species isolated from free-range chicken samples an informal settlement. Arch. Med. Sci., 8(1): 39-42. [Crossref] [PubMed] [PMC]

2. Shon, A.S., Bajwa, R.P.S. and Russo, T.A. (2013) Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed. Virulence, 4(2): 107-118. [Crossref] [PubMed] [PMC]

3. Gupta, A. (2002) Hospital-acquired infections in the neonatal intensive care unit--Klebsiella pneumoniae. Semin Perinatol., 26(5): 340-345. [Crossref]

4. Guo, Z.H., Qin, L., Pang, Z., Qin, T. and Ren, H. (2016) Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS One, 11(4): e0153561. [Crossref]

5. Mohammed-Aly, M., Khalil, S. and Metwaly, A. (2014) Isolation and molecular identification of Klebsiella spp. microbe isolated from chicks. Alex. J. Vet. Sci., 43(1): 97-103. [Crossref]

6. Wu, H., Wang, M., Liu, Y., Wang, X., Wang, Y., Lu, J. and Xu, H. (2016) Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int. J. Food Microbiol., 232: 95-102. [Crossref]

7. Kim, S.H, Wei, C.I, Tzou, Y.M. and An, H. (2005) Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma. J. Food Prot., 68(10): 2022-2029. [Crossref]

8. Bidet, P., Burghoffer, B., Gautier, V., Brahimi, N. and Mariani-Kurkdjian, P. (2005) In vivo transfer of plasmid-encoded ACC-1 ampC from Klebsiella pneumoniae to Escherichia coli in an infant and selection of impermeability to imipenem in K. pneumoniae. Antimicrob. Agents Chemother., 49(8): 3562-3565. [Crossref] [PubMed] [PMC]

9. Schjorring, S. and Krogfelt, K.A.S. (2008) Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia Coli in the mouse intestine. J. Antimicrob. Chemother., 62(5): 1086-1093. [Crossref] [PubMed] [PMC]

10. Kaur, M. and Aggarwal, K. (2013) Occurrence of the CTX-M, SHV, and the TEM genes among the extended spectrum β-lactamase producing isolates of Enterobacteriaceae in a tertiary care hospital of North India. J. Clin. Diagn. Res., 7(4): 642-645. [Crossref]

11. Ashayeri-Panah, M., Feizabadi, M.M. and Eftekhar, F. (2014) Correlation of multi-drug resistance, integron and blaESBL gene carriage with genetic fingerprints of extended-spectrum β-lactamase producing Klebsiella pneumoniae. Jundishpur J. Microbiol., 7(2): 1-5. [Crossref]

12. Mobarak-Qamsari, M., Ashayeri-Panah, M., Eftekhar, F. and Feizabadi, M.M. (2013) Integron mediated multidrug resistance in extended-spectrum beta-lactamase producing clinical isolates of Klebsiella pneumoniae. Braz. J. Microbiol., 44(3): 849-854. [Crossref]

13. Arief, R.A., Darmawan, R.D., Sunandar, Widyastuti, M.D.W., Nugroho E, Jatikusumah A, Putra, A.A.G., Basuno, E., Karuniawati, A., Suwandono, A., Wiliyanto, I., Suandy, I. and Latif, H. (2016).. The use of antibiotics in laying hens in Central Java, Indonesia. Konferensi Ilmiah Vet. Nasional, 14(1): 22-25.

14. Masruroh, C.A., Sudarwanto, M.B. and Latif, H. (2016) The occurrence of extended-spectrum β-lactamase-producing Escherichia coli from broiler feces in Bogor. J. Sound Vib., 34(3-4): 42-49.

15. Chander, Y., Jindal N.R., Hanson, K. and Goyal, S.M. (2011) Differentiation of Klebsiella pneumoniae and K. oxytoca by multiplex polymerase chain reaction. Int. J. Appl. Res. Vet. Med., 9(2): 138-142.

16. Clinical and Laboratory Standards Insitute. (2017) Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI Institute, Wayne (US).

17. European Committee on Antimicrobial Susceptibility Testing. (2018) Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.1. Available from: www.eucast.org. Last accessed on 07-08-2018.

18. Momtaz, H., Rahimi, E. and Moshkelani, S. (2012) Molecular detection of antimicrobial resistance genes in E. coli isolated from slaughtered commercial chickens in Iran. Vet. Med., 57(4): 193-197. [Crossref]

19. Lymo, B., Buza, J., Subbiah, M., Smith, W. and Call, D.R. (2016) Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in Northern Tanzania: A cross-sectional study. BMC Microbiol., 16(1): 254. [Crossref]

20. Claeys, G., De Baere, T., Wauters, G., Vandecandelaere, P., Verscraegen, G. and Vaneechoutte, M.A. (2004) Extended-spectrum β-lactamase (ESBL) producing Enterobacter aerogenes phenotypically misidentified as Klebsiella pneumoniae or K. terrigena. BMC Microbiol., 49: 49. [Crossref]

21. Adekambi, T., Drancourt, M. and Raoult, D. (2008) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol., 17(1): 37-45. [Crossref]

22. Food and Agriculture Organization. (2008) Poultry Production and the Environment a Review. Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome.

23. Michalova, E., Novotna, P. and Schelegelova J. (2004) Tetracyclines in veterinary medicine and bacterial resistance to them. Vet. Med. Czech, 49(3): 79-100. [Crossref]

24. World Health Organization. (2011) Tackling Antibiotic Resistance from a Food Safety Perspective in Europe. World Health Organization, Copenhagen (Denmark).

25. European Medicine Agency. (2016) Reflection Paper on Use of Aminoglycosides in Animals in the European Union: Development of Resistance and Impact on Human and Animal Health. European Medicine Agency, London (UK). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/07/WC500232227.pdf. Last accessed on 07-08-2018.

26. Overdevest, I.T., Heck, M., Van der Zwaluw, K., Huijsdens, X., Van Santen, M., Rijnsburger, M., Eustace, A., Xu, L., Hawkey, P., Savelkoul, P., Vandenbroucke-Grauls, C., Willemsen, I., van der Ven, J., Verhulst, C. and Kluytmans, J.A. (2014). Extended-spectrum β-lactamase producing Klebsiella spp. In chicken meat and humans: A comparison of typing methods. Clin. Microbiol. Infect., 20(3): 251-255. [Crossref]

27. Zarfel, G., Galler, H., Luxner, J., Petternel, C., Reinthaler, F.F., Haas, D., Kittinger, C., Grisold, A.J., Pless, P. and Feierl, G. (2014) Multiresistant bacterial isolated from chicken meat in Austria. Int. J. Res. Public Health, 11(12): 12582-12593. [Crossref] [PubMed] [PMC]

28. Ibrahim, I.A.J. and Hameed, T.A.K. (2015) Isolation, Characterization and antimicrobial resistance patterns of lactose-fermenter Enterobacteriaceae isolates from clinical and environmental samples. J. Med. Microbiol., 5: 169-176. [Crossref]

29. Puspanadan, S., Afsah-Hejri, L., Loo, Y.Y., Nillian, E., Kuan, C.H, Goh, S.G, Chang, W.S., Lye, Y.L., John, Y.H.T., Rukayadi, Y., Yoshitsugu, N., Nishibuchi, M. and Son, R. (2012) Detection of Klebsiella pneumoniae in raw vegetables using most probable number-polymerase chain reaction (MPN-PCR). Int. Food Res. J., 19(4): 1757-1762.

30. Wu, H., Wang, M., Liu, Y., Wang, X., Wang, Y., Lu, J. and Xu, H. (2016) Data on the phylogenetic typing, integrin gene cassette array analysis, multi-drug resistance analysis and correlation between antimicrobial resistance determinants in Klebsiella strains. Data Brief, 8: 1289-1294. [Crossref] [PubMed] [PMC]

31. Fard, B. (2004) The effect of colistin sulfate in feed on the controlling of Salmonella enteritidis contamination in a broiler farm. Arch. Razi Inst., 58(1): 105-111.

32. Thyagarajan, D., Barathi, M. and Sakthivadivu, R. (2014) Risk mitigation of poultry industry pollutants and waste for environmental safety. Glob. J. Sci. Front. Res. Agric. Vet., 14(1): 1-10.