doi: 10.14202/vetworld.2019.271-276
Share this article on [Facebook] [LinkedIn]
Article history: Received: 15-11-2018, Accepted: 11-01-2019, Published online: 16-02-2019
Corresponding author: R. Dinakaran Michael
E-mail: dean.sls@velsuniv.ac.in
Citation: Yengkhom O, Shalini KS, Subramani PA, Michael RD (2019) Stimulation of non-specific immunity, gene expression, and disease resistance in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), by the methanolic extract of the marine macroalga, Caulerpa scalpelliformis, Veterinary World, 12(2): 271-276.Aim: The objective of the present study was to test the immunostimulating potential of marine macroalga, Caulerpa scalpelliformis, in terms of non-specific immune responses, gene expression, and disease resistance of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758).
Materials and Methods: O. niloticus was injected intraperitoneally with three different doses of methanol extract of C. scalpelliformis (CSME) (2 mg/kg, 20 mg/kg, or 200 mg/kg body weight), or MacroGardTM (commercial immunostimulant, positive control, and 20 mg/kg body weight), or distilled water (untreated control). In one set of fish, 5 days post-injection, serum lysozyme, myeloperoxidase, and antiprotease activities were assayed. 24 h after injection, gene expression was analyzed in a separate set of fish. To another set of fish, 1 week post-administration of the products, fish were challenged with lethal dose 50 (LD50) dose of a live virulent pathogen, Aeromonas hydrophila and subsequent resistance to it was noted in terms of cumulative percent mortality.
Results: CSME increased serum lysozyme, myeloperoxidase, and antiprotease activities. There was an increase in the expression of lysozyme gene in the spleen of treated fish. Mid dose of CSME caused the minimum mortality of 10% (consequent relative percentage survival = 73) which is comparable to that of the positive control.
Conclusion: CSME is considered to have the potential to be developed into an immunostimulant for finfish aquaculture.
Keywords: Aeromonas hydrophila, Caulerpa scalpelliformis, immunostimulant, macroalga, Oreochromis niloticus.
1. Food and Agriculture Organization. (2016) The State of World Fisheries and Aquaculture 2016. Food and Agriculture Organization, Rome. p200.
2. Subramani, P.A. and Michael, R.D. In: Jeney, G., editor. (2017) Prophylactic and Prevention Methods Against Diseases in Aquaculture, in Fish Diseases. Academic Press, Cambridge, Massachusetts, United States. p81.
3. Awad, E.and Awaad, A. (2017) Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol., 67: 40-54. [Crossref] [PubMed]
4. Charoonnart, P., Purton, S. and Saksmerprome, V. (2018) Applications of microalgal biotechnology for disease control in aquaculture. Biology (Basel), 7(2): e24. [Crossref]
5. ∅verland, M., Mydland, L.T. and Skrede, A. (2018) Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric., 99(1): 13-24. [Crossref] [PubMed]
6. Sharma, B.R. and Rhyu, D.Y. (2014) Anti-diabetic effects of Caulerpa lentillifera: Stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. Asian Pac. J. Trop. Biomed., 4(7): 575-580. [Crossref] [PubMed] [PMC]
7. da Matta, C.B.B., de Souza, E.T., de Queiroz, A.C., de Lira, D.P., de Araujo, M.V., Cavalcante-Silva, L.H.A., de Miranda, G.E.C., de Araujo-Junior, J.X., Barbosa-Filho, J.M., de Oliveira Santos, B.V. and Alexandre-Moreira, M.S. (2011) Antinociceptive and anti-inflammatory activity from algae of the genus Caulerpa. Mar. Drugs, 9(3): 307-318. [Crossref] [PubMed] [PMC]
8. Chia, Y.Y., Kanthimathi, M.S., Khoo, K.S., Rajarajeswaran, J., Cheng, H.M. and Yap, W.S. (2015) Antioxidant and cytotoxic activities of three species of tropical seaweeds. BMC Complement. Altern. Med., 15(1): 339. [Crossref]
9. Klein, J. and Verlaque, M. (2008) The Caulerpa racemosa invasion: A critical review. Mar. Pollut. Bull., 56(2): 205-225. [Crossref] [PubMed]
10. Khaw, H.L., Ponzoni, R.W. and Danting, M.J.C. (2008) Estimation of genetic change in the GIFT strain of nile tilapia (Oreochromis niloticus) by comparing contemporary progeny produced by males born in 1991 or in 2003. Aquaculture, 275(1): 64-69. [Crossref]
11. Rakocy, J.E. (2005) Cultured Aquatic Species Information Programme. Oreochromis niloticus, 2005. FAO Fisheries and Aquaculture Department, Rome.
12. Zhang, D., Xu, D.H. and Shoemaker, C. (2016) Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila. Aquaculture Rep., 3(1): 18-23. [Crossref]
13. Jenkins, J.A., Bart, H.L.Jr., Bowker, J.D., Bowser, P.R., MacMillan, J.R., Nickum, J.G., Rachlin, J.W., Rose, J.D., Sorensen, P.W., Warkentine, B.E. and Whitledge, G.W. (2014) Guidelines for the use of fishes in research: Revised and expanded. Fisheries, 39(9): 415-416. [Crossref]
14. Yengkhom, O., Shalini, K.S., Subramani, P.A. and Michael, R.D. (2018) Non-specific immunity and disease resistance are enhanced by the polysaccharide fraction of a marine chlorophycean macroalga in Oreochromis niloticus (Linnaeus, 1758). J. Appl. Ichthyol., 34(3): 556-567. [Crossref]
15. Das, S., Das, K. and Dubey, V. (2011) Inhibitory activity and phytochemical assessment of ethno-medicinal plants against some human pathogenic bacteria. J. Med. Plant. Res., 5(29): 6536-6543.
16. Michael, R.D., Srinivas, S.D, Sailendri K. and Muthukkaruppan, V.R. (1994) A rapid method for repetitive bleeding in fish. Indian J. Exp. Biol., 32(11): 838.
17. Hutchinson, T.H. and Manning, M.J. (1996) Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limanda L.) sampled from Lyme Bay, U.K. Fish Shellfish Immunol., 6(7): 473. [Crossref]
18. Quade, M.J. and Roth, J.A. (1997) A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol., 58(3-4): 239-248. [Crossref]
19. Bowden, T.J., Butler, R., Bricknell, I.R. and Ellis, A.E. (1997) Serum trypsin-inhibitory activity in five species of farmed fish. Fish Shellfish Immunol., 7(6): 377. [Crossref]
20. Qiang, J., He, J., Yang, H., Wang, H., Kpundeh, M.D., Xu, P. and Zhu, Z.X. (2014) Temperature modulates hepatic carbohydrate metabolic enzyme activity and gene expression in juvenile GIFT tilapia (Oreochromis niloticus) fed a carbohydrate-enriched diet. J. Therm. Biol., 40: 25-31. [Crossref]
21. Tang, J., Cai, J., Liu, R., Wang, J., Lu, Y., Wu, Z. and Jian, J. (2014) Immunostimulatory effects of artificial feed supplemented with a Chinese herbal mixture on Oreochromis niloticus against Aeromonas hydrophila. Fish Shellfish Immunol., 39(2): 401. [Crossref]
22. Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to Image: 25 years of image analysis. Nat. Methods, 9(7): 671. [Crossref]
23. Baba, E., Acar, U., Yilmaz, S., Zemheri, F. and Ergun, S. (2018) Dietary olive leaf (Olea europea L.) extract alters some immune gene expression levels and disease resistance to Yersinia ruckeri infection in rainbow trout Oncorhynchus mykiss. Fish Shellfish Immunol., 79: 28-33. [Crossref]
24. Acar, U. (2018) Effects of diet supplemented with ethanolic extract of propolis on growth performance, hematological and serum biochemical parameters and disease resistance of Mozambique tilapia (Oreochromis mossambicus) against Streptococcus iniae. Aquaculture, 495: 339-344. [Crossref]
25. Balasubramanian, R. and Michael, R.D. (2016) Immunostimulatory effects of N-oxide Quaternary alkaloid fraction of a marine Chlorophycean macroalga in the striped murrel, Channa striata (Bloch). Aquaculture Res., 47(2): 591-604. [Crossref]
26. Luo, C., Gwekwe, B., Choto, P., Miao, W., Chen, M., Xue, C., Xu, Y., Yin, X., Magawa, G., Wu, D., Akida, J.S., Wang, L., Li, Q. and Deng, S. (2018) Bitter peptides from enzymatically hydrolyzed protein increase the number of leucocytes and lysozyme activity of large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol., 81: 130-134. [Crossref]
27. Cole, A.M., Thapa, D.R., Gabayan, V., Liao, H.I., Liu, L. and Ganz, T. (2005) Decreased clearance of Pseudomonas aeruginosa from airways of mice deficient in lysozyme M. J. Leukoc. Biol., 78(5): 1081-1085. [Crossref] [PubMed]
28. Rajendran, P., Subramani, P.A. and Michael, D. (2016) Polysaccharides from marine macroalga, Padina gymnospora improve the nonspecific and specific immune responses of Cyprinus carpio and protect it from different pathogens. Fish Shellfish Immunol., 58: 220-228. [Crossref]
29. Fletcher, G.L., Hobbs, R.S., Evans, R.P., Shears, M.A., Hahn, A.L. and Hew, C.L. (2011) Lysozyme transgenic Atlantic salmon (Salmo salar L.). Aquaculture Res., 42(3): 427-440. [Crossref]
30. Abarike, E.D., Jian, J., Tang, J., Cai, J., Yu, H., Lihua, C. and Jun, L. (2018) Influence of traditional Chinese medicine and Bacillus species (TCMBS) on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Aquaculture Res., 49(7): 2366-2375. [Crossref]
31. Yeh, H.Y. and Klesius, P.H. (2013) Changes of serum myeloperoxidase and nitric oxide in the early stage of Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Dis., 36(4): 441-446. [Crossref] [PubMed]
32. Wang, K., Fang, X., Ma, N., Lin, Q., Huang, Z., Liu, W., Xu, M., Chen, X., Zhang, W. and Zhang, Y. (2015) Myeloperoxidase-deficient zebrafish show an augmented inflammatory response to challenge with Candida albicans. Fish Shellfish Immunol., 44(1): 109-116. [Crossref] [PubMed]
33. Kim, S.S. and Lee, K.J. (2008) Effects of dietary kelp (Ecklonia cava) on growth and innate immunity in juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquaculture Res., 39(15): 1687-1690.
34. Harikrishnan, R., Kim, D.H., Hong, S.H., Mariappan, P., Balasundaram, C. and Heo, M.S. (2012) Non-specific immune response and disease resistance induced by Sigesbeckia glabrescens against Vibrio parahaemolyticus in Epinephelus bruneus. Fish Shellfish Immunol., 33(2): 359-364. [Crossref] [PubMed]
35. Magnadottir, B. (2006) Innate immunity of fish (overview). Fish Shellfish Immunol., 20(2): 137-151. [Crossref] [PubMed]
36. Kirubakaran, C.J.W., Subramani, P.A. and Michael, R.D. (2016) Methanol extract of Nyctanthes arbor-tristis seeds enhances non-specific immune responses and protects Oreochromis mossambicus (Peters) against Aeromonas hydrophila infection. Res. Vet. Sci., 105: 243-248. [Crossref] [PubMed]
37. Wu, Y.R., Gong, Q.F., Fang, H., Liang, W.W., Chen, M. and He, R.J. (2013) Effect of Sophora flavescens on non-specific immune response of tilapia (GIFT Oreochromis niloticus) and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol., 34(1): 220-227. [Crossref] [PubMed]
38. Boshra, H., Li, J. and Sunyer, J.O. (2006) Recent advances on the complement system of teleost fish. Fish Shellfish Immunol., 20(2): 239-262. [Crossref] [PubMed]
39. Abdel-Tawwab, M., Adeshina, I., Jenyo-Oni, A., Ajani, E.K. and Emikpe, B.O. (2018) Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.), to dietary clove basil, Ocimum gratissimum, leaf extract and its susceptibility to Listeria monocytogenes infection. Fish Shellfish Immunol., 78: 346-354. [Crossref]
40. Rattanachaikunsopon, P. and Phumkhachorn, P. (2010) Effect of Cratoxylum formosum on innate immune response and disease resistance against Streptococcus agalactiae in tilapia Oreochromis niloticus. Fish. Sci., 76(4): 653-659. [Crossref]
41. Harikrishnan, R., Heo, J., Balasundaram, C., Kim, M.C., Kim, J.S., Han, Y.J. and Heo, M.S. (2010) Effect of Punica granatum solvent extracts on immune system and disease resistance in Paralichthys olivaceus against lymphocystis disease virus (LDV). Fish Shellfish Immunol., 29(4): 668-673. [Crossref] [PubMed]