doi: 10.14202/vetworld.2019.106-111
Share this article on [Facebook] [LinkedIn]
Article history: Received: 11-04-2018, Accepted: 28-11-2018, Published online: 21-01-2019
Corresponding author: Lilik Maslachah
E-mail: lilik.maslachah@yahoo.com
Citation: Maslachah L, Sugihartuti R, Wahyuni RS (2019) Hematologic changes and splenic index on malaria mice models given Syzygium cumini extract as an adjuvant therapy, Veterinary World, 12(1): 106-111.Aim: This research aimed to determine the efficacy of Syzygium cumini L. as an adjuvant therapy on blood changes and splenic index of mice model malaria.
Materials and Methods: Mice were infected intraperitoneally with 0.2 ml red blood cell (RBC) that contains 1×106 Plasmodium berghei. 35 mice were divided into seven treatment groups: Group K0: Mice were not infected; K1: Mice were infected; K2: Mice were infected and given chloroquine; P1: Mice were infected and given S. cumini leaf extract; P2: Mice were infected and given chloroquine and also S. cumini leaf extract; P3: Mice was infected and given S. cumini stem bark extract; and P4: Mice were infected and given chloroquine and S. cumini stem bark extract. Treatment was given for 4 days 24 h post-P. berghei infection. 21st day post-P. berghei infection, blood was taken from the heart for hematological examination, and the spleen was taken to examine the splenic index and also to measure the weight and length of the spleen. Hematological data and splenic index were analyzed by analysis of variance test, and if there is a difference, the test is continued by Duncan's multiple range test with 5% level.
Results: The K0 group has normal hemoglobin (HGB), RBC, and hematocrit (HCT) and significantly different (p<0.05) than other groups. HGB, RBC, and HCT of K1 group were under normal range, lowest, and significantly different (p<0.05) than other groups. Mean corpuscular volume and mean corpuscular HGB values of K2 groups showed a decrease. The number of leukocytes, lymphocytes, and monocytes of K1 groups was increasing and significantly different (p<0.05) with K2 and treatment group. The length, width, weight, and splenic index of K1 group were significantly different (p<0.05) with K0 group. K2 and treatment groups showed that the length and width of spleens were significantly different (p<0.05) with K1.
Conclusion: The combination of chloroquine with leaf and chloroquine with stem bark extract of S. cumini as adjuvant therapy may increase the amount of erythrocyte; decrease the number of leukocytes, lymphocytes, and monocytes; and decrease the length, width, and splenic index on malaria mice models.
Keywords: hematology, splenic index, Syzygium cumini, Plasmodium berghei.
1. WHO. (2010) World Malaria Report 2010. World Health Organization, Geneva, Switzerland.
2. WHO. (2012) Malaria Report 2012. World Health Organization, Geneva, Switzerland.
3. Ngole, S.I.U., Theresa, N., Moses, S., Thomas, N., Manka, N.E. and Titanji, V.P.K. (2010) Hematological changes and recovery associated with treated and untreated Plasmodium falciparum infection in children in the Mount Cameroon region. J. Clin. Med. Res., 2(9): 143-151.
4. Chaves, L.F., Taleo, G., Kalkoa, M. and Kaneko, A. (2011) Spleen rates in children: An old and new surveillance tool for malaria elimination initiatives in island settings. Soc. Trop. Med. Hyg., 105(4): 226-231. [Crossref] [PubMed]
5. Buffet, P.A., Safeukul, I., Milon, G., Mercereau-Puijalon, O., and David, P.H. (2009) Retention of erythrocytes in the spleen: A double-edged process in human malaria. Curr. Opin. Hematol., 16(3): 157-164. [Crossref] [PubMed]
6. Noedl, H., Se, Y., Schaecker, K., Smith, B.L., Socheat, D. and Fukuda, M.M. (2008) Evidence of artemisinin-resistant malaria in Western Cambodia. N. Engl. J. Med., 359(24): 2619-2620. [Crossref] [PubMed]
7. Hiben, M.G., Sibhat, G.G., Fanta, B.S., Gebrezgi, H.D. and Tesema, S.B. (2016) Evaluation of Senna singueana leaf extract an alternative or adjuvant therapy for malaria. J. Tradit. Complement. Med., 6(1): 112-117. [Crossref] [PubMed] [PMC]
8. Van den Steen, P.E., Van Aeist, I., Starckx, S., Maskos, K. and Opdenakker, G. (2006) Matrix metalloproteinases, tissue inhibitors of MMPs and TACE in experimental cerebral malaria. Lab. Invest., 86(9): 873-888. [Crossref] [PubMed]
9. Van den Steen, P.E., Geurts, N., Deroost, K., Van Aeist, I. and Verthenne, S. (2010) Immunopathology and dexamethasone therapy in a new model for malaria-associated acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 181(9): 957-968. [Crossref] [PubMed]
10. Prato, M., Gallo, V., Giribaldi, G., Aldieri, E. and Arese, P. (2010) Role of the NF-kB transcription pathway in the haemozoin and 15 HETE mediated activation of matrix metalloproteinase 9 in human adherent monocytes. Cell Microbiol., 12(12): 1780-1791. [Crossref] [PubMed]
11. Swami, S.B., Thakor, N.S., Patil, M.M. and Haidankar, P.M. (2012) Jamun (Syzygium cumini L): A review of its and medicinal uses. J. Food Nutr. Sci., 3(8): 1100-1117.
12. Ghosh, P., Pradhan, R.C., Mishra, S., Patel, A.S. and Kar, A. (2017) Physicochemical and nutritional characterization of Jamun (Syzygium cumini L). Curr. Res. Nutr. Food Sci., 5(1):25-35. [Crossref]
13. Zhang, L.L., Lin,Y.M. (2009) Antioxidant tannins from Syzygium cumini fruit. Afri. J. Biotech., 8(10):2303-2309.
14. Iribhogbe, O.I., Agbaje, E.O., Oreagba, L.A., Aina, O. and Ota, A.D. (2012) Oxidant versus antioxidant activity in malaria: Role of nutritional therapy. J. Med. Sci., 12(7): 229-233. [Crossref]
15. Tadesse, S.A. and Wubneh, Z.B. (2017) Antimalarial activity of Syzygium quinese during early and established Plasmodium infection in rodent models. BMC Complement. Altern. Med., 17(1): 21. [Crossref] [PubMed] [PMC]
16. Muregi, F.W., Ohta, I., Masato, U., Kino, H. and Ishih, A. (2011) Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness. PLoS One, 6(6): e21251. [Crossref]
17. Amabeoku, G.J. and Kabatende, J. (2012) Antinociceptive and anti-inflammatory activities of leaf methanol extract of Cotyledon orbiculata L (Crassulaceae). Adv. Pharmacol. Sci., L(1): 862625.
18. Gluhcheva, Y., Atanasov, V., Ivanova, J. and Mitewa, M. (2012) Cobalt induced changes in the spleen of mice from different stages of development. J. Toxicol. Environ. Health, 75(22-23): 1418-1422. [Crossref] [PubMed]
19. Haroon, H., Fazel, P.A., Naeem, M., Mobin, A., Nagvi, A.H. and Makki, K. (2013) Hide and seek hematological aspects of malaria: Developing country perspective. J. Infect. Dev. Ctries., 7(3): 273-279. [Crossref]
20. Awandare, G.A., Martinson, J.J. and Were, T. (2009) MIF (macrophage migration inhibitory factor) promoter polymorphisms and susceptibility to severe malarial anemia. J. Infect. Dis., 200(4): 629-637. [Crossref] [PubMed] [PMC]
21. Awandare, G.A., Kempaiah, P., Ochiel, D.O., Piazza, P., Keller, C.C. and Perkins, D.J. (2010) Mechanisms of erythropoiesis inhibition by malarial pigment and malaria-induced proinflammatory mediators in an in vitro model. Am. J. Hematol., 86(2): 155-162. [Crossref] [PubMed] [PMC]
22. Anguilar, R., Moraleda, C., Achtman, A.H., Mayor, A., Guinto, L., Cistero, P., Nhabomba, A., Macete, E., Schofield, L., Aloso, P.I. and Menendez, C. (2014) Severity of anemia is associated with bone marrow hemozoin in children exposed to Plasmodium falciparum. Br. J. Haematol., 164(6): 877-887. [Crossref] [PubMed]
23. Thawani, N., Tam, M., Bellemare, M.J., Bohie, D.S., Olivier, M., de Souza, J.B. and Stevenson, M.M. (2014) Plasmodium products contribute to severe malarial anemia by inhibiting erythropoietin-induced proliferation of erythroid precursors. J. Infect. Dis., 209(1): 140-149. [Crossref] [PubMed]
24. Mourao, L.C., da Silva Roma, P.M., da Silva Sultane Aboobacar, J., Medeiros, C.M.P., de Almeida, Z.B., Fontes, C.J.F., Agero, U., de Mesquita, O.N., Bemquerer, M.P. and Braga, E.M. (2016) Anti-erythrocyte antibodies may contribute to anemia in Plasmodium vivax malaria by decreasing red blood cell deformability and increasing erytrhrophagocytosis. Malar. J., 15(1): 397. [Crossref] [PubMed] [PMC]
25. Rodrigues, J.R. and Gamboa, N.D. (2007) Plasmodium berghei: In vitro and in vivo activity of dequalinium. Exp. Parasitol., 115(1): 19-24. [Crossref] [PubMed]
26. Rodrigues, J.R. and Gamboa, N.D. (2009) Effect of dequalinium on oxidative stress in Plasmodium berghei infected erythrocytes. Parasitol. Res., 104(6): 1491-1496. [Crossref] [PubMed]
27. Isah, M.B. and Ibrahim, M.A. (2014) The role of antioxidants treatment on pathogenesis of malarial infections: A review. Parasitol. Res., 113(3): 308-809. [Crossref]
28. Haroon, R., Jelani, S. and Arshad, F.K. (2015) Comparative analysis of antioxidant profiles of bark, leaves and seeds of Syzygium cumini (Indian Blackberry). Int. J. Research. Granthaalayah., 3(5):13-26.
29. Margaret, E. and Sao, U.V. (2015) Evaluation of antioxidant activity in different part of Syzygium cumini (Linn). Int. J. Curr. Microbiol. Appl. Sci., 4(9): 372-379.
30. Ruan, Z.P., Zhang, L.L. and Lin, Y.M. (2008) Evaluation of the Antioxidant Activity of Syzygium cumini Leaves. Department of Biology School of Life Sciences Xiamen University, Xiamen China.
31. Othuke, B.O., Uwakwe, A.A. and Monago, C.C. (2012) Some biochemical and haematological studies on the methanolic extract of Anthocleista grandiflora stem bark. Int. J. Appl. Sci. Technol., 2(5): 58-65.
32. Kapoor, G., Bagai, U. and Banyal, H.S. (2011) Plasmodium berghei in apoptotic changes in splenic and peripheral blood cells. Trop. Biomed., 28(1): 119-124. [PubMed]
33. Omonkhua, A.A., Cyriblutayo, M.C., Akanbi, O.M. and Adabayo, O.A. (2013) Antimalarial, hematological and antioxidant effects of methanolic extract of Terminalis avicennioides in Plasmodium berghei infected mice. Parasitol. Res., 112(10): 3497-3503. [Crossref] [PubMed]
34. Dkhil, M.A.E. (2009) Apoptotic changes induced in mice splenic tissue due to malarial infection. J. Microbiol. Immunol. Infect., 42(1): 13-18. [PubMed]
35. Klei, T.R.L., Meinderts, S.M., Van den Berg, T.K. and Van Bruggen, R. (2017) From the cradle to the grave: The role of macrophages in erythropoiesis and erytrophagocytosis. Front. Immunol., 8(2): 73. [Crossref]
36. Rashid, M.K., Alam, R., Khan, S. and Prakash, V. (2013) Oxidative stress marker and antioxidant status in Falciparum malaria in relation to the intensity of parasitemia. Int. J. Biol. Med. Res., 4(3): 3469-3471.
37. Chagas, V.T., Franca, L.M., Malik, S. and Mareni de Andrade Paes, A. (2015) Syzygium cumini L skeels: A prominent source of bioactive molecules against cardiometabolic diseases. Front. Pharmacol., 6(11): 259. [Crossref]
38. Saravanan, G. and Pari, L. (2008) Hypoglycaemic and antihyperglycaemic effect of Syzygium cumini bark in streptozotocin-induced diabetic rats. J. Pharmacol. Toxicol., 3(1): 1-10. [Crossref]
39. Jayachandra, K., Maheswaras, A. and Murali, M. (2012) In vitro evaluation of nitric oxide scavenging activity of Syzygium cumini Linn bark (Myrtaceae). Int. J. Pharm. Sci. Res., 3(2): 615-619.
40. Eshwarappa, R.S.B., Iyer, R.S., Subbaramadah, S.R., Richard, S.A. and Dhananjaya, B.L. (2014) Antioxidant activity of Syzygium cumini Leaf gall extracts. Bioimpacts, 4(2): 101-107. [PubMed] [PMC]
41. Soh, W.K. and Parnell, J. (2012) A revision of Syzygium gaertn (Myrtaceae) in Indochina (Cambodia, Laos and Vietnam). Adansonia, 37(1): 179-275.