Open Access
Review (Published online: 05-01-2019)
3. The antioxidant components of milk and their role in processing, ripening, and storage: Functional food
Imran Taj Khan, Mohammed Bule, Rahman Ullah, Muhammad Nadeem, Shafaq Asif and Kamal Niaz
Veterinary World, 12(1): 12-33

Imran Taj Khan: Department of Dairy Technology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Lahore-54000, Pakistan.
Mohammed Bule: Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia.
Rahman Ullah: Department of Dairy Technology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Lahore-54000, Pakistan.
Muhammad Nadeem: Department of Dairy Technology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Lahore-54000, Pakistan.
Shafaq Asif: Faculty of Veterinary Medicine, University of Teramo, Campus Coste Sant'Agostino, Renato Balzarini Street, 1, 64100 Teramo, Italy.
Kamal Niaz: Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences (CUVAS)-Bahawalpur-63100 Pakistan.

doi: 10.14202/vetworld.2019.12-33

Share this article on [Facebook] [LinkedIn]

Article history: Received: 31-07-2018, Accepted: 05-11-2018, Published online: 05-01-2019

Corresponding author: Kamal Niaz

E-mail: kamalniaz1989@gmail.com

Citation: Khan IT, Bule M, Ullah R, Nadeem M, Asif S, Niaz K (2019) The antioxidant components of milk and their role in processing, ripening, and storage: Functional food, Veterinary World, 12(1): 12-33.
Abstract

The current rate of population growth is so fast that, to feed this massive population, a 2-fold increase in land is required for the production of quality food. Improved dietary products such as milk and its products with antioxidant properties and functional foods of animal origin have been utilized to prevent chronic diseases. The designer milk contains low fat and less lactose, more protein, modified level of fatty acids, and desired amino acid profiles. The importance of milk and its products is due to the presence of protein, bioactive peptides, conjugated linoleic acid, omega-3 fatty acid, Vitamin D, selenium, and calcium. These constituents are present in milk product, play a key role in the physiological activities in human bodies, and act as anti-inflammatory, anti-tumor, antioxidant, hypocholesterolemic, immune boosting, and antimicrobial activities. Consumer awareness regarding benefits of designer foods such as milk and its products is almost non-existent worldwide and needs to be established to reach the benefits of designer food technologies in the near future. The main objective of this review was to collect data on the antioxidant properties of milk and its constituents which keep milk-derived products safe and preserved.

Keywords: cholesterol, eggs, functional foods, milk, nutraceuticals, omega-3 polyunsaturated fatty acids.

References

1. Khush, G.S. (2002) The promise of biotechnology in addressing current nutritional problems in developing countries. Food Nutr. Bull., 23(4): 354-357. [Crossref] [PubMed]

2. Rajasekaran, A. and Kalaivani, M. (2013) Designer foods and their benefits: A review. J. Food Sci. Technol., 50(1): 1-16. [Crossref]

3. Mayne, S.T. and Spungen, J.H. (2017) The US food and drug administration's role in improving nutrition: Labeling and other authorities. J. Food Compos. Anal., 64(1): 5-9. [Crossref]

4. O'keeffe, M.B., Conesa, C. and Gerald, R.J. (2017) Identification of angiotensin converting enzyme inhibitory and antioxidant peptides in a whey protein concentrate hydrolysate produced at semi-pilot scale. Int. J. Food Sci. Technol., 52(8): 1751-1759. [Crossref]

5. Dabbou, S., Gai, F., Renna, M., Rotolo, L., Dabbou, S., Lussiana, C., Kovitvadhi, A., Brugiapaglia, A., De Marco, M., Helal, A.N., Zoccarato, I. and Gasco, L. (2017) Inclusion of bilberry pomace in rabbit diets: Effects on carcass characteristics and meat quality. Meat Sci., 124: 77-83. [Crossref]

6. Mahgoub, S., Osman, A. and Sitohy, M. (2011) Inhibition of growth of pathogenic bacteria in raw milk by legume protein esters. J. Food Prot., 74(9): 475-1481. [Crossref]

7. Sitohy, M. and Osman, A. (2018) Bioactive Compounds in Soybean Proteins and Its Applications in Food Systems. Sustainability of Agricultural Environment, Egypt. [Crossref]

8. Sitohy, M.Z., Mahgoub, S.A. and Osman, A.O. (2012) In vitro and in situ antimicrobial action and mechanism of glycinin and its basic subunit. Int. J. Food Microbiol., 154(1-2): 19-29. [Crossref] [PubMed]

9. Alagawany, M., El-Hindawy, M., Attia, A., Farag, M. and El-Hack, M.A. (2015) Influence of dietary choline levels on growth performance and carcass characteristics of growing Japanese quail. Adv. Anim. Vet. Sci., 3(2): 109-115. [Crossref]

10. Hamedi, F, Mohebbi, M., Shahidi, F. and Azarpazhooh, E. (2018) Ultrasound-assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: Mass transfer, texture, and phenolic evaluations. Food Bioprocess Technol., 11(5): 1061-1074. [Crossref]

11. Lambeau, K.V. and McRorie, J.W. (2017) Fiber supplements and clinically proven health benefits: How to recognize and recommend effective fiber therapy. J. Am. Assoc. Nurse Pract., 29(4): 216-223. [Crossref]

12. Rizk, M.A., Abdalla, A.A. and El-Sayed, S.A.E.S. (2017) Evaluation of ascorbic acid in a combination of ivermectin in augmentation the recovery from juvenile generalized demodicosis in dogs: A randomized clinical trial. PSM Vet. Res., 2(2): 14-21.

13. Dhama, K., Saminathan, M., Jacob, S.S., Singh, M., Karthik, K., Tiwari, A.R., Sunkara, L.T., Malik, Y.S. and Singh, R.S. (2015) Effect of immunomodulation and immunomodulatory agents on health with some bioactive principles, modes of action and potent biomedical applications. Int. J. Pharm., 11(4): 253-290. [Crossref]

14. Firbank, L.G. and Forcella, F. (2000) Genetically modified crops and farmland biodiversity. Science, 289(5484): 1481-1482. [Crossref]

15. Kendall, A., Woolcock, A., Brooks, A. and Moore, G.E. (2017) Glutathione peroxidase activity, plasma total antioxidant capacity, and urinary f2-isoprostanes as markers of oxidative stress in anemic dogs. J. Vet. Int. Med., 31(6): 1700-1707. [Crossref] [PubMed] [PMC]

16. Bolger, Z., Brunton, N.P., Lyng, J.G. and Monahan, F.J. (2017) Comminuted meat products-consumption, composition, and approaches to healthier formulations. Food Rev. Int., 33(2): 143-166. [Crossref]

17. Diplock, A.T. (1999) Scientific concepts of functional foods in Europe: Consensus document. Br. J. Nutr., 81(1): 1-27.

18. Rondanelli, M., Faliva, M.A., Perna, S., Giacosa, A., Peroni, G. and Castellazzi, A.M. (2017) Using probiotics in clinical practice: Where are we now? A review of existing meta-analyses. Gut. Microbes., 8(6): 521-543. [Crossref] [PubMed] [PMC]

19. Shlisky, J., Bloom, D.E., Beaudreault, A.R., Tucker, K.L. and Keller, H.H. (2017) Nutritional considerations for healthy aging and reduction in age-related chronic disease. Adv. Nutr., 8(1): 17-26. [Crossref]

20. Pecka-Kielb, E., Czerniawska-Piatkowska, E. and Kowalewska-Luczak, E. (2018) Polymorphism in ovine ANXA9 gene and physic-chemical properties and the fraction of protein in milk. J. Sci. Food Agric., 98(14): 5396-5400. [Crossref] [PubMed]

21. Tripathi, M. (2014) Effect of nutrition on production, composition, fatty acids and nutraceutical properties of milk. Adv. Dairy Res., 2014(8): 1-11.

22. Morsy, T.A., Kholif, A.E., Matloup, O.H., Abu Elella, A., Anele, U.Y. and Caton, J.S. (2018) Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res., 85(2): 142-151. [Crossref] [PubMed]

23. Sabouri, S. Arranz, E., Guri, A. and Corredig, M. (2018) Sodium caseinate stabilized emulsions as a delivery system for epigallocatechin-gallate: Bioaccessibility, anti-proliferative activity and intestinal absorption. J. Funct. Foods, 44: 166-172. [Crossref]

24. Tufarelli, V., Khan, R.U. and Laudadio, V. (2012) Evaluating the suitability of field beans as a substitute for soybean meal in early-lactating dairy cow: Production and metabolic responses. Anim. Sci. J., 83(2): 136-140. [Crossref] [PubMed]

25. Nadeem, M., Mahud, A., Imran, M. and Khalique, A. (2015) Enhancement of the oxidative stability of whey butter through almond (Prunus dulcis) peel extract. J. Food Process. Preserv., 39(6): 591-598. [Crossref]

26. Amills, M., Capote, J. and Tosser-Klopp, G. (2017) Goat domestication and breeding: A jigsaw of historical, biological and molecular data with missing pieces. Anim. Genet., 48(6): 631-644. [Crossref] [PubMed]

27. Zhou, L., Tang, Q., Wasim Iqbal, M., Xia, Z., Huang, F., Li, L., Liang, M., Lin, B., Qin, G. and Zou, C.. (2018) A comparison of milk protein, fat, lactose, total solids and amino acid profiles of three different buffalo breeds in Guangxi, China. Ital. J. Anim. Sci., 2018: 1-6. [Crossref]

28. Talpur, F.N., Bhanger, M. and Memon, N.N. (2009) Milk fatty acid composition of indigenous goat and ewe breeds from Sindh, Pakistan. J. Food Compos. Anal., 22(1): 59-64. [Crossref]

29. Sosa-Castillo, E., Rodriguez-Cruz, M. and Molto-Puigmarti, C. (2017) Genomics of lactation: Role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk. Br. J. Nutr., 118(3): 161-168. [Crossref] [PubMed]

30. Liu, Z., Logan, A., Cocks, B.G. and Rochfort, S. (2017) Seasonal variation of polar lipid content in bovine milk. Food Chem., 237: 865-869. [Crossref] [PubMed]

31. Canbay, H.S., Buyukoglu, T., Tuncer, H. and Canbaz, A.A. (2017) Effect of feeding management and seasonal variation on fatty acid composition and tocopherol content of cows' milk in region of West Mediterranean, Turkey. Karaelmas Muhendislik Derg., 7(1): 85-91.

32. Kala, R., Samkova, E., Koubova, J., Hasonova, L., Kvac, M. and Pelikanova, T. (2018) Nutritionally desirable fatty acids including cla of cow's milk fat explained by animal and feed factors. Acta Univ. Agric. Silvic. Mendeliana Brunensis, 66(1): 69-76. [Crossref]

33. Kairenius, P., Leskinen, H., Toivonen, V. and Muetzel, S. (2018) Effect of dietary fish oil supplements alone or in combination with sunflower and linseed oil on ruminal lipid metabolism and bacterial populations in lactating cows. J. Dairy Sci., 101(4): 3021-3035. [Crossref] [PubMed]

34. Bernard, L., Bonnet, M., Delavaud, C., Delosiere, M., Ferlay, A., Fougere, H. and Graulet, B. (2018) Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. Eur. J. Lipid Sci. Technol., 120(5): 1700039. [Crossref]

35. Meadus, J., Vahmani, P., Duff, J.L., Zantinge, T.D., Turner and Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada. (2017) CLA isomer t10, c12 induce oxidation and apoptosis in 3t3 adipocyte cells in a similar effect as omega-3 linolenic acid and DHA. Funct. Foods Health Dis., 7(2): 149-167. [Crossref]

36. Belanche, A., Newbold, C.J., Lin, W., Rees Stevens, P. and Kingston-Smith, A.H. (2017) A systems biology approach reveals differences in the dynamics of colonization and degradation of grass vs. Hay by rumen microbes with minor effects of Vitamin E supplementation. Front. Microbiol., 8: 1456. [Crossref]

37. Vargas-Bello-Perez, E., Geldsetzer-Mendozaa, C., Moralesb, M.S., Toro-Mujicaa, P., Fellenberga, M.A., Iba-eza, R.A., Gomez-Cortesc, P. and Garnsworthyd, P.C. (2018) Effect of olive oil in dairy cow diets on the fatty acid profile and sensory characteristics of cheese. Int. Dairy J., 85(9): 8-15. [Crossref]

38. Antonacci, L.E., Geldsetzer-Mendozaa, C., Moralesb, M.S., Toro-Mujicaa P., Fellenberga, M.A., Iba-eza, R.A., Gomez-Cortesc, P. and Garnsworthyd, P.C. (2017) Effects of feeding combinations of soybean and linseed oils on productive performance and milk fatty acid profile in grazing dairy cows. Agric. Sci., 8(9): 984. [Crossref]

39. Yu, E. and Hu, F.B. (2018) Dairy products, dairy fatty acids, and the prevention of cardiometabolic disease: A review of recent evidence. Curr. Atheroscler. Rep., 20(5): 24. [Crossref]

40. Yamaguchi, M., Naito, T., Nagao, Y. and Kabuyama, Y. (2017) Effect of increased feeding of dietary a-linolenic acid by grazing on formation of the cis9, trans11-18: 2 isoform of conjugated linoleic acid in bovine milk. Anim. Sci. J., 88(7): 1006-1011. [Crossref] [PubMed]

41. Ney, D.M. and Etzel, M.R. (2017) Designing medical foods for inherited metabolic disorders: Why intact protein is superior to amino acids. Curr. Opin. Biotechnol., 44(1): 39-45. [Crossref] [PubMed]

42. Van Eenennaam, A.L. (2017) Genetic modification of food animals. Curr. Opin. Biotechnol., 44(1): 27-34. [Crossref] [PubMed]

43. Hyttinen, J.M., Peura, T., Tolvanen, M., Aalto, J. and Alhonen, L. (1994) Generation of transgenic dairy cattle from transgene-analyzed and sexed embryos produced in vitro. Nat. Biotechnol., 12(6): 606. [Crossref]

44. Gavin, W., Blash, S., Buzzell, N., Pollock, D., Chen, L., Hawkins, N., Howe, J., Miner, K., Pollock, J., Porter, C., Schofield, M., Echelard, Y. and Meade, H. (2018) Generation of transgenic goats by pronuclear microinjection: A retrospective analysis of a commercial operation (1995-2012). Transgenic Res., 27(1): 115-22. [Crossref] [PubMed]

45. Capecchi, M.R. (1989) The new mouse genetics: Altering the genome by gene targeting. Trends Genet., 5(3): 70-76. [Crossref]

46. Wu, J., Platero-Luengo, A., Sakurai, M., Sugawara, A., Gil, M.A., Yamauchi, T., Suzuki, K., Bogliotti,. Y.S., Cuello, C., Valencia, M., Okumura, D., Luo, J., (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell, 168(3): 473-486, e15. [Crossref]

47. Bogliotti, Y.S., Wu, J., Vilarino, M., Okamura, D., Soto, D.A., Zhong, C., Sakurai, M., Sampaio, R.V., Suzuki, K., Izpisua Belmonte, J.C. and Ross, P.J. (2018) Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci., 115(9): 2090-2095. [Crossref] [PubMed] [PMC]

48. Debode, F., Janssen, E. and Marien, A. (2018) Detection of transgenic atlantic and coho salmon by real-time PCR. Food Anal. Methods, 11(9): 1-11. [Crossref]

49. Lu, F., Luo, C., Li, N., Liu, Q., Wei, Y., Deng, H., Wang, X., Li, X., Jiang, J., Deng, Y. and Shi, D. (2018) Efficient generation of transgenic buffalos (Bubalus bubalis) by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein. Sci. Rep., 8(1): 6967. [Crossref]

50. Smith, J.M. (2017) Survey Reports Improved Health After Avoiding Genetically Modified Foods. Institute for Responsible Technology. International Journal of Human Nutrition and Functional Medicine.

51. Fleming, A., Abdalla, E.A., Maltecca, C. and Baes, C.F. (2018) Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Arch. Anim. Breed., 61(1): 43-57. [Crossref]

52. Tufarelli, V., Selvaggi, M., Dario, C. and Laudadio, V. (2015) Genetically modified feeds in poultry diet: Safety, performance, and product quality. Crit. Rev. Food Sci. Nutr., 55(4): 562-569. [Crossref] [PubMed]

53. Kar, P., Meena, H. and Patnaik, N.M. (2018) Factors influencing consumers purchase intention towards organic and cloned animal food products. Int. J. Curr. Microbiol. App. Sci., 7: 1-9. [Crossref]

54. Moreno-Gonzalez, D., Hamed, A.M., Garcia-Campa-a, A.M. and Gamiz-Gracia, L. (2017) Evaluation of hydrophilic interaction liquid chromatography-tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods. Talanta, 171: 74-80. [Crossref] [PubMed]

55. Medhammar, E., Wijesinha-Bettoni, R., Stadlmayr, B., Nilsson, E., Charrondiere, U.R. and Burlingame, B. (2012) Composition of milk from minor dairy animals and buffalo breeds: A biodiversity perspective. J. Sci. Food Agric., 92(3): 445-474. [Crossref] [PubMed]

56. Gayathri, B. and Renu, A. (2015) Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus. J. Food Sci. Technol., 51(12): 4138-4142.

57. Grazyna, C., Hanna, C., Adam, A. and Magdalena, B.M. (2017) Natural antioxidants in milk and dairy products. Int. J. Dairy Technol., 70(2): 165-178. [Crossref]

58. Adler, S.A. and Steinshamn, H. (2017) Equol and Enterolactone - Two Mammalian Phytoestrogens with Estrogenic Potency found in Organically Produced Milk. In NJF Seminar 495-4th Organic Conference: Organics for Tomorrow's Food Systems Mikkeli, Finland.

59. Akhtar, M.J., Mondor, M. and Aider, M. (2018) Impact of the drying mode and ageing time on sugar profiles and antioxidant capacity of electro-activated sweet whey. Int. Dairy J., 80: 17-25. [Crossref]

60. Fox, P.F., Guinee, T.P., Cogan, T.M. and McSweeney, P.L. (2017) Chemistry of milk constituents. In: Fundamentals of Cheese Science. Springer. New York. p71-104. [Crossref]

61. Yeh, W.J., Hsiaa, S.H., Leeb, W.H. and Wu, C.H. (2017) Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug Anal., 25(1): 84-92. [Crossref] [PubMed]

62. Patrignani, F., Modestob, M., Michelinib, S., Sansostib, M.C., Serrazanettia, D.I., Qviristc, L., Sirolia, L., Camprinia, L., Mattarellib, P. and Lanciottia, R. (2018) Technological potential of bifidobacterium aesculapii strains for fermented soymilk production. LWT, 89: 689-696. [Crossref]

63. Benzie, I.F. and Devaki. M. (2018) The 5 ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. Measurement of antioxidant activity and capacity. Recent Trends Appl., 1st edition: 77-106. [Crossref]

64. Lucey, J.A., Otter, D. and Horne, D.S. (2017) A 100-year review: Progress on the chemistry of milk and its components. J. Dairy Sci., 100(12): 9916-9932. [Crossref] [PubMed]

65. Mlynek, K., Glowinska, B., Salomonczyk, E., Tkaczuk, J. and Stys, W. (2018) The effect of daily milk production on the milk composition and energy management indicators in Holstein-Friesian and Simmental cows. Turk. J. Vet. Anim. Sci., 42(4): 223-229. [Crossref]

66. Csighy, A., Koris, A. and Vatai, G. (2017) Modelling the partial demineralization process of cow milk by superpro designer. Hungarian J. Ind. Chem., 45(2): 9-12. [Crossref]

67. Pal, M., Patel, A.S., Bariya, A.R., Godishala, V. and Kandi, V. (2017) A review of biotechnological applications in food processing of animal origin. Am. J. Food Sci. Tech., 5(4): 143-8.

68. Kraus, A., Annunziata, A. and Vecchio, R. (2017) Sociodemographic factors differentiating the consumer and the motivations for functional food consumption. J. Am. Coll. Nutr., 36(2): 116-126. [Crossref] [PubMed]

69. Hahn, W.H., Song, J.H., Song, S. and Kang, N.M. (2017) Do gender and birth height of infant affect calorie of human milk? An association study between human milk macronutrient and various birth factors. J. Mater. Fetal Neonatal Med., 30(13): 1608-1612. [Crossref] [PubMed]

70. Lindsey, C.E. (2017) Influence of Conjugated Linoleic Acid Supplementation on Body Composition of Weaned Pigs (Doctoral dissertation), Sam Houston State University, 1-23.

71. Henno, M., Ariko, T., Kaart, T. and Kuusik, S. (2018) The fatty acid composition of Estonian and Latvian retail milk; implications for human nutrition compared with designer milk. J. Dairy Res., 85(2): 247-250. [Crossref] [PubMed]

72. Depping, V., Grunowa, M., Middelaarb, C. and Dumplerc, J. (2017) Integrating environmental impact assessment in to new product development and processing-technology selection: Milk concentrates as substitutes for milk powders. J. Clean. Prod., 149: 1-10. [Crossref]

73. Kiczorowska, B., Samolinska, W., Marczuk, J., Winiarska-Mieczan, A., Klebaniuk, R., Kowalczuk-Vasilev, E., Kiczorowski, P. and Zasadnad, Z. (2017) Comparative effects of organic, traditional, and intensive production with probiotics on the fatty acid profile of cow's milk. J. Food Composit. Anal., 63: 157-163. [Crossref]

74. Murru, E., Carta, G., Cordeddu, L., Melis, M.P., Desogus, E., Ansar, H., Chilliard, Y., Ferlay, A., Stanton, C., Coakley, M., Ross, R.P., Piredda, G., Addis, M., Mele, M.C., Cannelli, G., Banni, S. and Manca, C. (2018) Dietary conjugated linoleic acid-enriched cheeses influence the levels of circulating n-3 highly unsaturated fatty acids in humans. Int. J. Mol. Sci., 19(6): E170. [Crossref]

75. Dorea, J. and Armentano, L. (2017) Effects of common dietary fatty acids on milk yield and concentrations of fat and fatty acids in dairy cattle. Anim. Prod. Sci., 57(11): 2224-2236. [Crossref]

76. Sabikhi, L. (2004) Designer milk - An imminent milestone in dairy biotechnology. Curr. Sci., 87(11): 1530-1535.

77. Garcia, C., Duby, C., Catheline, D., Toral, P.G., Bernard, L., Legrand, P. and Rioux, V. (2017) Synthesis of the suspected trans-11, cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed Δ13-desaturation of vaccenic acid. J. Dairy Sci., 100(1): 783-796. [Crossref] [PubMed]

78. Carneiro, I.S., Menezes,. J.N.R., Maia, J.A., Miranda, A.M., Oliveira, V.B.S., Murray, J.D., Maga, E.A4., Bertolini, M. and Bertolini, L.R. (2018) Milk from transgenic goat expressing human lysozyme for recovery and treatment of gastrointestinal pathogens. Eur. J. Pharm. Sci., 112(15): 79-86. [Crossref] [PubMed]

79. Oliveira, D., Ares, G. and Deliza, R. (2017) Influence of intrinsic and extrinsic factors on consumer liking and wellbeing perception of two regular and probiotic milk products. J. Sens. Stud., 32(3): e12261. [Crossref]

80. Milankov, O. (2017) Goat milk: Prejudices and facts. Med. Pregl., 70(9-10): 265-270. [Crossref]

81. Sicherer, S.H. and Sampson, H.A. (2018) Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol., 141(1): 41-58. [Crossref] [PubMed]

82. Gil, F., Amezqueta, A., Martinez, D., Aznal, E., Etayo, V., Dura, T. and Sanchez-Valverde, F. (2017) Association between caesarean delivery and isolated doses of formula feeding in cow milk allergy. Int. Arch. Allergy Immunol., 173(3): 147-152. [Crossref] [PubMed]

83. Mazzucchelli, G., Holzhauser, T., Cirkovic Velickovic, T., Diaz-Perales, A., Molina, E., Roncada, P., Rodrigues, P., Verhoeckx, K. and Hoffmann-Sommergruber, K. (2018) Current (Food) allergenic risk assessment: Is it fit for novel foods? Status quo and identification of gaps. Mol. Nutr. Food Res., 62(1): 1700278. [Crossref]

84. Holm, L.E., Poulsen, A.N., Thomsen, B., Panitz, F. and Larsen, L.B. (2018) Differential Gene Expression in Mammary Gland Epithelial Cells Between Holstein Individuals with High or Low A-Lactalbumin Milk Protein Content. In: ICAR Conference and World Congress on Genetics Applied to Livestock Production 2018.

85. Brimelow, R.E., West, N.P., Williams, L.T., Cripps, A.W. and Cox, A.J. (2017) A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Crit. Rev. Food Sci. Nutr., 57(8): 1593-1602. [Crossref]

86. Bai, Z., Guo, X.H., Tang, C., Yue, S.T., Shi, L. and Qiang, B. (2018) Effects of artesunate on the expressions of insulin-like growth factor-1, osteopontin and C-telopeptides of Type II collagen in a rat model of osteoarthritis. Pharmacology, 101(1-2): 1-8. [Crossref]

87. Lee, H., Zavaleta, N., Chen, S.Y., Lonnerdal, B. and Slupsky, C. (2018) Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants. NPJ Sci. Food, 2(1): 6. [Crossref]

88. Prasad, W., Khamrui, K., Mandal, S. and Badola, R. (2017) Anti-oxidative, physicochemical and sensory attributes of burfi affected by incorporation of different herbs and its comparison with synthetic anti-oxidant (BHA). J. Food Sci. Technol., 54(12): 3802-3809. [Crossref] [PMC]

89. Manios, Y., Moschonis, G., Mavrogianni, C., van den Heuvel, E., Singh-Povel, C.M., Kiely, M. and Cashman, K.D. (2017) Reduced-fat gouda-type cheese enriched with Vitamin D3 effectively prevent Vitamin D deficiency during winter months in postmenopausal women in Greece. Eur. J. Nutr., 56(7): 2367-2377. [Crossref]

90. Mok, I.K., Lee, J.K., Kim, J.H., Pan, C.H. and Kim, S.M. (2018) Fucoxanthin bioavailability from fucoxanthin-fortified milk: In vivo and in vitro study. Food Chem., 258: 79-86. [Crossref]

91. Kruger, M.C., Chan, Y.M., Lau, L.T., Lau, C.C., Chin, Y.S., Kuhn-Sherlock, B., Todd, J.M. and Schollum, L.M. (2017) Calcium and Vitamin D fortified milk reduces bone turnover and improves bone density in postmenopausal women over 1 year. Eur. J. Nutr., 57(8): 1-10.

92. Akkermans, M.D., Eussen, S.R., van der Horst-Graat, J.M., van Elburg, R.M., van Goudoever, J.B. and Brus, F. (2017) A micronutrient-fortified young-child formula improves the iron and Vitamin D status of healthy young European children: A randomized, double-blind controlled trial. Am. J. Clin. Nutr., 105(2): 391-399. [Crossref]

93. Caleja, C., Lillian, B., Amilcar, L.A., Ana, C., Joao, C.M., Marina, S., Oliveira, M.B.P.P., Celestino, S.B. and Isabel, C.F.R. (2015) Development of a functional dairy food: Exploring bioactive and preservation effects of chamomile (Matricaria recutita L.). J. Funct. Foods, 16(1): 114-124. [Crossref]

94. Van Raamsdonk, J.M., Vega, I.E. and Brundin, P. (2017) Oxidative stress in neurodegenerative disease: Causation or association? Oncotarget, 8(7): 10777. [Crossref] [PMC]

95. Sies, H. (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol., 11: 613-619. [Crossref]

96. Hopkins, B.L., Nadler, M., Skoko, J.J., Bertomeu, T., Pelosi, A., Shafaei, P.M., Levine, K., Schempf, A., Pennarun, B., Yang, B., Datta, D., Bucur, O., Ndebele, K., Oesterreich, S., Yang, D., Giulia Rizzo, M., Khosravi-Far, R. and Neumann, C.A. (2018) A peroxidase peroxiredoxin 1-specific redox regulation of the novel FOXO3 microRNA target let-7. Antioxid. Redox Signal., 28(1): 62-77. [Crossref] [PMC]

97. Kalra, S. and Sangha, G.K. (2017) Pesticides induced oxidative stress and histomorphological changes in liver and kidney of female Bandicota bengalensis and Tateraindica. J. Appl. Nat. Sci., 9(2): 935-939. [Crossref]

98. Maqbool, F., Mostafalou, S., Bahadar, H. and Abdollahi, M. (2016) Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci., 145: 265-273. [Crossref]

99. Tubbs, A. and Nussenzweig, A. (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell, 168(4): 644-656. [Crossref] [PubMed]

100. Kataoka, H., Mizuno, K., Oda, E. and Saito, A. (2016) Determination of the oxidative stress biomarker urinary 8-hydroxy-2-deoxyguanosine by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography tandem mass spectrometry. J. Chromatogr. B, 1019: 140-146. [Crossref]

101. Calderon, G., Juarez, O.H., Hernandez, G.E., Punzo, S.M. and De la Cruz, Z.D. (2017) Oxidative stress and diabetic retinopathy: Development and treatment. Eye, 31(8): 1122. [Crossref]

102. Zhang, H. and Forman H.J. (2017) Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Arch. Biochem. Biophys., 617: 145-154. [Crossref] [PubMed] [PMC]

103. Niaz, K., Hassan, F.I., Mabqool, F., Khan, F., Momtaz, S., Baeeri, M., Navaei-Nigjeh, M., Rahimifard, M. and Abdollahi, M. (2017) Effect of styrene exposure on plasma parameters, molecular mechanisms and gene expression in rat model islet cells. Environ. Toxicol. Pharm., 54: 62-73. [Crossref] [PubMed]

104. Chondrogianni, N., Petropoulos, I., Grimm, S., Georgila, K., Catalgol, B., Friguet, B., Grune, T. and Gonos, E.S. (2014) Protein damage, repair and proteolysis. Mol. Aspects Med., 35: 1-71. [Crossref] [PubMed]

105. Albrecht, T., Schilperoort, M., Zhang, S., Braun, J.D., Qiu, J., Rodriguez, A., Pastene, D.O., Kramer, B.K., Koppel, H., Baelde, H., de Heer, E., Anna Altomare, A., Regazzoni, L., Denisi, A., Aldini, G., van den Born, J., Yard, B.A. and Hauske, S.J. (2017) Carnosine attenuates the development of both Type 2 diabetes and diabetic nephropathy in BTBR ob/ob mice. Sci. Rep., 7: 44492. [Crossref] [PubMed] [PMC]

106. Foyer, C.H. (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot., 154: 134-142. [Crossref] [PubMed] [PMC]

107. Kamala, A., Middha, S.K., Gopinath, C., Sindhura, H.S. and Karigar, S. (2018) In vitro antioxidant potentials of Cyperus rotundus L. Rhizome extracts and their phytochemical analysis. Pharm. Magaz., 14(54): 261. [Crossref] [PubMed] [PMC]

108. Manach, C., Milenkovic, D., Van de Wiele, T., Rodriguez-Mateos, A., de Roos, B., Garcia-Conesa, M.T., Landberg, R., Gibney, E.R., Heinonen, M., Tomas-Barberan, F. and Morand, C. (2017) Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol. Nutr. Food Res., 61(9): 1600557. [Crossref]

109. Siracusa, L., Grestab, F., Sperlinga, E. and Ruberto, G. (2017) Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J. Food Composit. Anal., 62:1-7. [Crossref]

110. Budak, S.O., Kocak, C., Bron, P.A. and de Vries, R.P. (2018) Role of Microbial Cultures and Enzymes During Cheese Production and Ripening. In: Microbial Cultures and Enzymes in Dairy Technology 2018. IGI Global. p182-203. [Crossref]

111. Cacho, N.T. and Lawrence, R.M. (2017) Innate immunity and breast milk. Front. Immunol., 8:584. [Crossref] [PubMed] [PMC]

112. Gong, J. and Xiao, M. (2018) Effect of organic selenium supplementation on selenium status, oxidative stress, and antioxidant status in selenium-adequate dairy cows during the periparturient period. Biol. Trace Elem. Res., 186(2): 1-11. [Crossref]

113. Ferretti, U., Ciura, J., Ksas, B., Rac, M., Sedlarova, M., Kruk, J., Havaux, M., and Pospisil, P. (2018) Chemical quenching of singlet oxygen by plastoquinols and their oxidized products in Arabidopsis. Plant J., 95(5), 848-861. [Crossref] [PubMed]

114. Franco, R. and Martinez-Pinilla, E. (2017) Chemical rules on the assessment of antioxidant potential in food and food additives aimed at reducing oxidative stress and neurodegeneration. Food Chem., 235(4): 318-323. [Crossref] [PubMed]

115. Gutierrez, A.M., Boylston, T.D. and Clark, S. (2018) Effects of pro-oxidants and antioxidants on the total antioxidant capacity and lipid oxidation products of milk during refrigerated storage. J. Food Sci., 83(2): 275-283. [Crossref] [PubMed]

116. Upadhyay, N., Nagaraj, V., Borad, S. and Kumar, A. (2017) Application of Natural Antioxidants in Dairy Foods. In: Natural Antioxidants 2017. Apple Academic Press, London. p281-318. [PubMed]

117. Sahilli, Y.C. (2018) Determination of Antioxidant Activities in Milk Obtained from Simmental Breed of Cattle. Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi.

118. Boor, K.J., Wiedmann, M., Murphy, S. and Alcaine, S. (2017) A 100-year review: Microbiology and safety of milk handling. J. Dairy Sci., 100(12): 9933-9951. [Crossref] [PubMed]

119. Geissler, C. and Powers, H.J. (2017) Human Nutrition. Oxford University Press, Oxford.

120. Borkova, M. and Snaselova, J. (2005) Possibilities of different animal milk detection in milk and dairy products - A review. Czech J. Food Sci., 23(2): 41-50. [Crossref]

121. Bassols, A., Bendixen, E. and Miller, I. (2017) From farm to fork: Proteomics in farm animal care and food production. In: Proteomics in Food Science 2017. Elsevier, Amsterdam, Netherlands. p145-161. [Crossref]

122. Fardet, A. and Rock E. (2018) In vitro and in vivo antioxidant potential of milks, yogurts, fermented milks, and cheeses: A narrative review of evidence. Nutr. Res. Rev., 31(1): 52-70. [Crossref] [PubMed]

123. Marcone, S., Belton, O. and Fitzgerald, D.J. (2017) Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br. J. Clin. Pharm., 83(1): 152-162. [Crossref] [PubMed] [PMC]

124. Tu, M., Liu, H., Zhang, R., Chen, H., Fan, F., Shi, P., Xu, X., Lu, W. and Du, M. (2018) Bioactive hydrolysates from casein: Generation, identification, and in silico toxicity and allergenicity prediction of peptides. J. Sci. Food Agric., 98(9): 3416-3426. [Crossref] [PubMed]

125. Bamdad, F., Shin, S.H., Suh, J.W., Nimalaratne, C. and Sunwoo, H. (2017) Anti-Inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules, 22(4): 609. [Crossref]

126. Di Pierro, P., Mariniello, L., Concetta, V.L. and Esposito, M. (2017) Dairy whey protein-based edible films and coatings for food preservation. Food Pack. Preserv., 9: 439-456.

127. Lorenzo, J.M., Pateiro, M., Dominguez, R., Barba, F.J., Putnik, P., Kovacevic, D.B., Shpigelman, A., Granato, D. and Franco, D. (2018) Berries extracts as natural antioxidants in meat products: A review. Food Res. Int., 106: 1095-1104. [Crossref] [PubMed]

128. Santos-Sanchez, N.F., Salas-Coronado, R., Valadez-Blanco, R., Hernandez-Carlos, B. and Guadarrama-Mendoza, P.C. (2017) Natural antioxidant extracts as food preservatives. Acta scientiarum polonorum. Technol. Aliment., 16(4): 361-370. [Crossref]

129. Lippolis, J.D. and Nally J.E. (2018) Considerations for farm animal proteomic experiments: An introductory view gel-based versus non-gel-based approaches. In: Proteomics in Domestic Animals: From Farm to Systems Biology 2018. Springer. Cham, Switzerland. p7-16. [Crossref]

130. Chanfrau, J., Perez, J., Fiallos, M.V., Intriago, L.M., Porras, V.H., Guerrero, M.J. and Toledo, L.E. (2018) Milk whey-from a problematic byproduct to a source of valuable products for health and industry: An overview from biotechnology. La Prensa Med., 103(4).

131. Padhi, E.M., Liu, R., Hernandez, M., Tsao, R.D. and Ramdath, D. (2017) Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. J. Funct. Foods, 38(8): 602-611. [Crossref]

132. Young, A.J. and Lowe G.L. (2018) Carotenoids - Antioxidant Properties. Multidisciplinary Digital Publishing Institute, Antioxidants (Basel). 7(2): 28. [Crossref]

133. Radi, R. (2018) Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci., 115(23): 5839-5848. [Crossref] [PubMed] [PMC]

134. Sharabi, S., Okun, Z. and Shpigelman, A. (2018) Changes in the shelf life stability of riboflavin, Vitamin C and antioxidant properties of milk after (ultra) high pressure homogenization: Direct and indirect effects. Innov. Food Sci. Emerg. Technol., 47(4): 161-169. [Crossref]

135. Campagnollo, F.B., Gonzales-Barron, U., Cadavez, V.A. and Sant'Ana, A.S. (2018) Quantitative risk assessment of Listeria monocytogenes in traditional minas cheeses: The cases of artisanal semi-hard and fresh soft cheeses. Food Control, 92: 370-379. [Crossref]

136. Manzi, P. and Durazzo, A. (2017) Antioxidant properties of industrial heat-treated milk. J. Food Meas. Charact., 11(4): 1690-1698. [Crossref]

137. Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L.D., Hidalgo, F.J., Miyashita, K., Camp, J.V., Alasalvar, C., Ismail, A.B., Elmore, S., Birch, G.G., Charalampopoulos, D., Astley, S.B., Pegg, R., Zhou, P. and Finglas, P. (2018) Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem., 264: 471-475. [Crossref]

138. Hagemeier, J., Ramanathan, M., Schweser, F., Dwyer, M.G., Lin, F., Bergsland, N., Weinstock-Guttman, B. and Zivadinov, R. (2018) Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals. Neuroimage Clin., 17: 530-540. [Crossref] [PubMed] [PMC]

139. Garcia-Larsen, V., Ierodiakonou, D., Jarrold, K., Cunha, S., Chivinge, J., Robinson, Z., Geoghegan, N., Ruparelia, A., Devani, P., Trivella, M., Leonardi-Bee, J. and Boyle, R.J. (2018) Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med., 15(2): e1002507. [Crossref]

140. Hoppu, U., Rinne, M., Salo-Vaananen, P., Lampi, A.M., Piironen, V. and Isolauri, E. (2005) Vitamin C in breast milk may reduce the risk of atopy in the infant. Eur. J. Clin. Nutr., 59(1): 123. [Crossref]

141. Paus, T. (2018) Investigating the role of micronutrients in brain development and psychiatric disorders via magnetic resonance imaging. JAMA Psychiatry, 75(8): 880-882. [Crossref] [PubMed]

142. Li, W. and Beta, T. (2011) Evaluation of antioxidant capacity and aroma quality of anthograin liqueur. Food Chem., 127(3): 968-975. [Crossref] [PubMed]

143. Qin, L.Q., Wang, X.P., Li, W., Tong, X. and Tong, W.X. (2009) The minerals and heavy metals in cow's milk from China and Japan. J. Health Sci., 55(2): 300-305. [Crossref]

144. Barlowska, J., Szwajkowska, M., Litwinczuk, Z. and Krol, J. (2011) Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf., 10(6): 291-302. [Crossref]

145. Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J. and Doreau, E. (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol., 109(8): 828-855. [Crossref]

146. Kasparova, M., Plisek, J., Solichova, D., Krcmova, L., Kucerova, B., Hronek, M. and Solich, P. (2012) Rapid sample preparation procedure for determination of retinol and a-tocopherol in human breast milk. Talanta, 93: 147-152. [Crossref] [PubMed]

147. Batool, M., Nadeem, M., Imran, M., Gulzar, N., Shahid, M.Q., Shahbaz, M., Ajmal, M. and Khan, I.T. (2018) Impact of Vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. Lipids Health Dis., 17(1): 79. [Crossref]

148. Tan, L.T.H., Chan, K.C., Khan, T.M., Bukhari, S.I., Saokaew, S., Duangjai, A., Pusparajah, P., Lee, L.H. and Goh. B.H. (2017) Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front. Pharm., 8: 276. [Crossref] [PubMed] [PMC]

149. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S. and Kalayci, O. (2012) Oxidative stress and antioxidant defense. World Allergy Organiz. J., 5(1): 9. [Crossref] [PubMed] [PMC]

150. Gutteridge, J.M. and Halliwell, B. (2018) Mini-review: Oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun., 502(2): 183-186. [Crossref] [PubMed]

151. De Renobales, M., Amores, G., Arran, J., Virto, M., Barron, L.J.R., Bustamante, M.A., Ruiz de Gordoa, J.C. and Najer, A.I. (2012) Part-time grazing improves sheep milk production and its nutritional characteristics. Food Chem., 130(1): 90-96. [Crossref]

152. Srivastava, P., Prasad, S.G.M., Ali, N.M. and Prasad, M. (2015) Analysis of antioxidant activity of herbal yogurt prepared from different milk. Pharm. Innov., 4(3): 18.

153. Smet, K., Raesb, K., De Blocka, J., Hermana, L., Dewettinckc, K. and Coudijzer, K. (2008) A change in antioxidative capacity as a measure of onset to oxidation in pasteurized milk. Int. Dairy J., 18(5): 520-530. [Crossref]

154. Najgebauer-Lejko, D. and Sady, M. (2015) Estimation of the antioxidant activity of the commercially available fermented milks. Acta scientiarum polonorum. Technol. Aliment., 14(4): 387-396. [Crossref] [PubMed]

155. De Ondarza, M., Wilson, J. and Engstrom, M. (2009) Case study: Effect of supplemental β-carotene on yield of milk and milk components and on reproduction of dairy cows. Prof. Anim. Sci., 25(4): 510-516. [Crossref]

156. Sivakumar, G., Dhanalakshmi, B., Nareshkumar, C. and Pugazhenthi, T.R. (2014) Antioxidant activity of herbal extract on khoa. Indian J. Vet. Anim. Sci. Res., 43(6): 445-451.

157. Yilmaz-Ersan, L., Ozcan, T., Akpinar-Bayizit, A. and Sahin, S. (2018) Comparison of antioxidant capacity of cow and ewe milk kefirs. J. Dairy Sci., 101(5): 3788-3798. [Crossref] [PubMed]

158. Roy, T. and Deepak, D. (2014) Antioxidant properties of milk oligosaccharides from various ruminants. Int. J. Pharm. Bio. Sci., 5(2): 400-408.

159. Vankudre, M., Balpande, A. and Athale M. (2015) Comparative analysis of a-amylase inhibition and antioxidant activity of whey from cow and buffalo milk fermented with Lactobacillus species. Biosci. Biotech. Res. Comm., 8(1): 25-28.

160. Puppel, K., Kuczynska, B., Nalecz-Tarwacka, T. and Grodzki, H. (2013) Influence of linseed variety on fatty acid profile in cow's milk. J. Sci. Food Agric., 93(9): 2276-2280. [Crossref] [PubMed]

161. Tagliazucchi, D., Shamsia, S., Helal, A. and Conte, A. (2017) Angiotensin-converting enzyme inhibitory peptides from goats' milk released by in vitro gastro-intestinal digestion. Int. Dairy J., 71: 6-16. [Crossref]

162. Khan, I.T., Nadeem, M., Imran, M., Ajmal, M and Ali, S. (2018) Antioxidant activity, fatty acids characterization and oxidative stability of gouda cheese fortified with mango (Mangifera indica L.) kernel fat. J. Food Sci. Technol., 55(3): 992-1002. [Crossref] [PubMed]

163. Ullah, R., Nadeem, M., Ayaz, M., Tayyab, M., Imran, M. and Sajid, R. (2015) Antioxidant characteristics of ice cream supplemented with sugarcane (Saccharum officinarum L.) juice. Food Sci. Biotechnol., 24(4): 1227-1232. [Crossref]

164. Nadeem, M., Abdullah, M., Javid, A. and Mahmood, T. (2012) Evaluation of functional fat from interesterified blends of butter oil and Moringa oleifera oil. Pak. J. Nutr., 11(9): 725. [Crossref]

165. Nadeem, M., Imran, M. and Khalique, A. (2016) Promising features of mango (Mangifera indica L.) kernel oil: A review. J. Food Sci. Technol., 53(5): 2185-2195. [Crossref] [PubMed] [PMC]

166. Ullah, R., Nadeem, M. and Imran, M. (2017) Omega-3 fatty acids and oxidative stability of ice cream supplemented with olein fraction of chia (Salvia hispanica L.) oil. Lipids Health Dis., 16(1): 34. [Crossref]

167. Dzomba, P., Ngoroyemoto, N. and Musarurwa, R. (2013) Antioxidant Capacity and Microbial Attributes of Raw Cow Milk Fortified with Hypotrigona Squamuligera Honey. Glob. J. Med. Res., Vol 13, No 3-C.

168. Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E.N., Lakshminarasaiah, U., Gopas, J. and Nishigaki, I. (2014) Antioxidants and human diseases. Clin. Chim. Acta, 436: 332-347. [Crossref] [PubMed]

169. Hameed, A., Hussain, M. and Akhtar, S. (2017) Lactation Responses Toward Milk Indigenous Enzymes. Livestock Science, InTech, Selim Sekkin, IntechOpen. [Crossref]

170. Matos, C., Ribeiro, M. and Guerra, A. (2015) Breastfeeding: Antioxidative properties of breast milk. J. Appl. Biomed., 13(3): 169-180. [Crossref]

171. Deth, R., Clarke, A., Ni, J. and Trivedi, M. (2015) Clinical evaluation of glutathione concentrations after consumption of milk containing different subtypes of β-casein: Results from a randomized, cross-over clinical trial. Nutr. J., 15(1): 82. [Crossref]

172. Jhambh, R., Dimri, U., Gupta, V.K. and Rathore, R. (2013) Blood antioxidant profile and lipid peroxides in dairy cows with clinical mastitis. Vet. World, 6(5): 271. [Crossref]

173. Awasthi, Y.C., Ramana, K.V., Chaudhary, P., Srivastava, S.K. and Awasthi, S. (2017) Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity. Free Rad. Biol. Med., 111: 235-243. [Crossref] [PubMed] [PMC]

174. Berndt, C. and Lillig. C.H. (2017) Glutathione, glutaredoxins, and iron. Antioxid. Redox Signal., 27(15): 1235-1251. [Crossref] [PubMed]

175. Tsiplakou, E., Abdullah, M.A.M., Mavrommatis, A., Chatzikonstantinou, M., Skliros, D., Sotirakoglou, K., Flemetakis, E., Labrou, N.E. and Zervas, G. (2017) The effect of dietary Chlorella pyrenoidosa inclusion on goats milk chemical composition, fatty acids profile and enzymes activities related to oxidation. Livest. Sci., 197: 106-111. [Crossref]

176. Ayaz, A., Kothandaraman, N., Henkel, R. and Sikka, S.C. (2018) Impact of environmental factors on the genomics and proteomics landscapes of male infertility. Bioenviron. Issues Affect. Men's Reprod. Sex. Health, 2018(3): 335-353. [Crossref]

177. Mishra, A., Chaudhary, S.K., Raje, S. and Bisht, P. (2018) Effect of niacin supplementation on milk yield and composition during heat stress in dairy cows: A review. Int. J. Curr. Microbiol. Appl. Sci., 6(3): 1719-1724.

178. Bae, G.S., Choi, A., Yeo, J.M., Kim, J.N., Song, J., Kim, E.J. and Chang, M.B. (2018) Supplementing rhodobacter sphaeroides in the diet of lactating Holstein cows may naturally produce coenzyme Q10-enriched milk. Asian-Australas. J. Anim. Sci., 31(1): 40. [Crossref]

179. Pfrimer, K., Ferriolli, E., Takeuchi, P.L., Salles, M.S., Saran-Netto, A., Zanetti, M.A., Roma-Junior, L.C., Braga, C.B.M., Domenici, F.A., Valim, Y.M., Paschoalato, A.B., Marchi, L.F., Azzolini, A.E., Donadi, E.A., Martinez, E. and Vannucchi, H. (2018) Effects of the consumption of milk biofortified with selenium, Vitamin E, and different fatty acid profile on immune response in the elderly. Mol. Nutr. Food Res., 62(4): 1700307. [Crossref]

180. Li, Q., Zhao, Y., Zhu, D., Pang, X., Liu, Y., Frew, R. and Chen, G. (2017) Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-exactive orbitrap mass spectrometry. Food Chem., 224: 302-309. [Crossref] [PubMed]

181. Hernandez-Galan, L., Cardador-Martinez, A., Picque, D., Spinnler, H., Lopez-del-Castillo, M. and del Campo, S.M. (2015) ACEI and antioxidant peptides release during ripening of Mexican cotija hard cheese. J. Food Res., 5(3): 85. [Crossref]

182. Liu, L., Qu, X. and Xia, Q. (2018) Effect of Lactobacillus rhamnosus on the antioxidant activity of cheddar cheese during ripening and under simulated gastrointestinal digestion. LWT, 95: 99-106. [Crossref]

183. Barac, M., Pesic, M., Zilic, S. and Smiljanic, M. (2016) Protein profiles and total antioxidant capacity of water-soluble and water-insoluble fractions of white brined goat cheese at different stages of ripening. Int. J. Food Sci. Technol., 51(5): 1140-1149. [Crossref]

184. Rashidinejad, A., Birch, E.J., Hindmarsh, J. and Everett, D.W. (2017) Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy. Food Chem., 215: 228-234. [Crossref] [PubMed]

185. Branciari, R., Ranucci, C., Trabalza, M. and Codini, M. (2015) Evaluation of the antioxidant properties and oxidative stability of pecorino cheese made from the raw milk of ewes fed Rosmarinus officinalis L. leaves. Int. J. Food Sci. Technol., 50(2): 558-565. [Crossref]

186. Rashidinejad, A., Birch, E.J. and Everett, D.W. (2016) Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion. J. Food Composit. Anal., 48: 13-24. [Crossref]

187. Rashidinejad, A., Birch, E., Sun-Waterhouse, D. and Everett, D.E. (2013) Effects of catechin on the phenolic content and antioxidant properties of low-fat cheese. Int. J. Food Sci. Technol., 48(12): 2448-2455. [Crossref]

188. Fernandes, R., Botrel, D.A, Monteiro, P.S. and Borges, S.V. (2018) Microencapsulated oregano essential oil in grated parmesan cheese conservation. Int. Food Res. J., 25(2): 661-669.

189. Cofrades, S., Benedi, J., Garcimartin, A., Sanchez-Muniz, F.J. and Jimenez-Colmenero, F. (2017) A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Res. Int., 99(3): 1084-1094. [Crossref] [PubMed]

190. Hala, M., Ebtisam, I., Sanaa, G., Badran, M.A., Gad, A.S. and Marwa, El-Said1, M. (2010) Manufacture of low fat UF-soft cheese supplemented with rosemary extract (as natural antioxidant). J. Am. Sci., 6(10): 570-579.

191. Bukvicki, D., Giweli, A., Stojkovic, D., Vujisic, L., Tesevic, V., Nikolic, M., Sokovic, M. and Marin, P.D. (2018) Cheese supplemented with Thymus algeriensis oil, a potential natural food preservative. J. Dairy Sci., 101(5): 3859-3865. [Crossref] [PubMed]

192. Mohamed, F.A.E.F., Salama, H.H, El-Sayed, S.M., El-Sayed, H.S. and Zahran, H.A. (2018) Utilization of natural antimicrobial and antioxidant of Moringa oleifera leaves extract in manufacture of cream cheese. J. Biol. Sci., 18(2): 92-106. [Crossref]

193. Balakrishnan, G. and Agrawal, R. (2014) Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus. J. Food Sci. Technol., 51(12): 4138-4142. [Crossref] [PubMed] [PMC]

194. Brignac, B. and Aryana, K.J. (2012) Influence of various antioxidants on the characteristics of plain yogurt. Food Nutr. Sci., 3(9): 1277. [Crossref]

195. Amal, A., Eman, A. and Nahla, S.Z. (2016) Fruit flavored yogurt: Chemical, functional and rheological properties. Int. J. Environ. Agric. Res., 2(5): 57-66.

196. Nielsen, J.H., Lund-Nielsen, T. and Skibsted, L. (2004) Higher Antioxidant Content in Organic Milk than in Conventional Milk due to Feeding Strategy. Newsletter from Danish Research Centre for Organic Farming.

197. Stancik, C.M., Conner, D.A., Jernakoff, P., Niedenzu, P.M., Duncan, S.E., Bianchi, L.M. and Johnson, D.S. (2017) Accelerated light protection performance measurement technology validated for dairy milk packaging design. Packaging Technol. Sci., 30(12): 771-780. [Crossref]

198. Potts, H., Amin, K. and Duncan, S. (2017) Retail lighting and packaging influence consumer acceptance of fluid milk. J. Dairy Sci., 100(1): 146-156. [Crossref] [PubMed]

199. Bjorklund, G. and Chirumbolo, S. (2017) Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition, 33: 311-321. [Crossref] [PubMed]

200. Usta, B. and Yilmaz-Ersan, L. (2013) Antioxidant enzymes of milk and their biological effects. Ziraat Fak. Derg., 27(2): 123-130.

201. Huang, D., Ou, B. and Prior, R.L. (2006) The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 53(6): 1841-1856. [Crossref] [PubMed]

202. Chen, J., Lindmark, M.H., Gorton, L. and Akesson, B. (2003) Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J., 13(12): 927-935. [Crossref]

203. Shaikh, S. and O'Donnell, C. (2017) Applications of fluorescence spectroscopy in dairy processing: A review. Curr. Opin. Food Sci., 17: 16-24. [Crossref]

204. Mortensen, G., Sorensen, J. and Stapelfeldt, H. (2002) Comparison of peroxide value methods used for semihard cheeses. J. Agric. Food Chem., 50(18): 5007-5011. [Crossref]

205. Nadeem, M., Situ, C. and Abdullah, M. (2015) Effect of olein fractions of milk fat on oxidative stability of ice cream. Int. J. Food Propert., 18(4): 735-745. [Crossref]

206. Uduwerella, G., Chandrapala, J. and Vasiljevic T. (2018) Preconcentration of yogurt base by ultrafiltration for reduction in acid whey generation during Greek yogurt manufacturing. Int. J. Dairy Technol., 71(1): 71-80. [Crossref]

207. Dunshea, F., D'Souza, D. and Channon, H. (2016) Metabolic modifiers as performance-enhancing technologies for livestock production. Anim. Front., 6(4): 6-14. [Crossref]

208. Stephany, R.W. (2010) Hormonal growth promoting agents in food producing animals. In: Doping in Sports: Biochemical Principles, Effects and Analysis. Springer, Dordrecht. p355-367. [PubMed]

209. Chiesa, L.M., Nobile, M., Panseri, S., Biolatti, B., Cannizzo, F.T., Pavlovic, R. and Arioli, F. (2017) Bovine teeth as a novel matrix for the control of the food chain: liquid chromatography-tandem mass spectrometry detection of treatments with prednisolone, dexamethasone, estradiol, nandrolone and seven β2-agonists. Food Addit. Contam. Part A, 34(1): 40-48. [Crossref] [PubMed]

210. Guitton, Y., Dervilly-Pinel, G., Jandova, R., Stead, S., Takats, Z. and Le Bizec, B. (2018) Rapid evaporative ionisation mass spectrometry and chemometrics for high-throughput screening of growth promoters in meat producing animals. Food Addit. Contam. Part A, 35(5): 1-11. [Crossref]

211. Robert, C., Huet, A.C., Suarez-Pantaleon, C., Brasseur, A., Delahaut, P. and Gillard, N. (2017) Development of a confirmatory method for detecting recombinant bovine somatotropin in plasma by immunomagnetic precipitation followed by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Food Addit. Contam. Part A, 34(11): 1925-1934. [Crossref] [PubMed]

212. Koch, B.J., Hungate, B.A. and Price, L.B. (2017) Food-animal production and the spread of antibiotic resistance: The role of ecology. Front. Ecol. Environ., 15(6): 309-318. [Crossref]

213. Gul, K., Singh, A. and Jabeen, R. (2016) Nutraceuticals and functional foods: The foods for the future world. Crit. Rev. Food Sci. Nutr., 56(16): 2617-2627. [Crossref] [PubMed]

214. Mazza, G., Shi, J. and Le Maguer. M. (2016) Functional Foods: Biochemical and Processing Aspects, Vol. 2. CRC Press, Boca Raton.

215. Bertolini, L., Meade, H., Lazzarotto, C.R., Martins, L.T., Tavares, K.C., Bertolini, M. and Murray, J.D. (2016) The transgenic animal platform for biopharmaceutical production. Transgenic Res., 25(3): 329-343. [Crossref] [PubMed]

216. Nicolia, A., Manzo, A., Veronesi, F. and Rosellini, D. (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol., 34(1): 77-88. [Crossref] [PubMed]

217. Uzogara, S.G. (2000) The impact of genetic modification of human foods in the 21st century: A review. Biotechnol. Adv., 18(3): 179-206. [Crossref]

218. Niaz, K., Maqbool, F., Bahadar, H. and Abdollahi, M. (2017) Health benefits of manuka honey as an essential constituent for tissue regeneration. Curr. Drug Metabol., 18(10): 881-892. [PubMed]

219. Pintova, S., Planutis, K., Planutiene, M. and Holcombe, R.F. (2017) ME-143 is superior to genistein in suppression of WNT signaling in colon cancer cells. Anticancer Res., 37(4): 1647-1653. [Crossref] [PubMed]

220. Vass, N., Czegledi, L. and Javor, A. (2008) Significance of functional foods of animal origin in human health. Sci. Pap. Anim. Sci. Biotechnol., 41(2): 263-270.

221. Hasler, C.M. (2002) Functional foods: Benefits, concerns and challenges - A position paper from the American Council on Science and Health. J. Nutr., 132(12): 3772-3781. [Crossref] [PubMed]

222. Ares, G. and Gambaro, A. (2007) Influence of gender, age and motives underlying food choice on perceived healthiness and willingness to try functional foods. Appetite, 49(1): 148-158. [Crossref] [PubMed]

223. Lusk, J.L. and Rozan, A. (2006) Consumer acceptance of ingenic foods. Biotechnol. J., 1(12): 1433-1434. [Crossref] [PubMed]

224. Wohlers, T.E. (2017) Genetic modification of food: A comparative examination of policy environments. Handb. Biol. Polit., 2017: 360-383. [Crossref]

225. Gineikiene, J., Kiudyte, J. and Degutis, M. (2017) Functional, organic or conventional? Food choices of health conscious and skeptical consumers. Balt. J. Manag., 12(2): 139-152. [Crossref]

226. Urala, N. and Lahteenmaki, L. (2004) Attitudes behind consumers' willingness to use functional foods. Food Qual. Prefer., 15(7-8): 793-803. [Crossref]

227. Varela-Candamio, L., Calvo, N. and Novo-Corti, I. (2018) The role of public subsidies for efficiency and environmental adaptation of farming: A multi-layered business model based on functional foods and rural women. J. Clean. Prod., 183: 555-565. [Crossref]

228. Gaykema, R.P., Newmyer, B.A., Ottolini, M., Raje, V., Warthen, D.M., Lambeth, P.S., Niccum, M., Yao, T., Huang, Y., Schulman, I.G., Harris, T.E., Patel, M.K., Williams, K.W. and Scott, M.M. (2017) Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J. Clin. Invest., 127(3): 1031-1045. [Crossref] [PubMed] [PMC]