doi: 10.14202/vetworld.2019.932-937
Share this article on [Facebook] [LinkedIn]
Article history: Received: 14-02-2019, Accepted: 07-05-2019, Published online: 02-07-2019
Corresponding author: Irina Anatolyevna Popova
E-mail: ir.popova94@gmail.com
Citation: Chernigova SV, Chernigov YV, Vatnikov YA, Kulikov EV, Popova IA, Shirmanov VI, Molchanova MA, Likhacheva IF, Voronina YY, Lukina DM (2019) Special aspects of systemic inflammation course in animals, Veterinary World, 12(7): 932-937.Aim: In this study, we identified characteristics of systemic inflammation associated with surgical sepsis in animals. We evaluated the role of purine metabolism, functionally associated lipoperoxidation processes of membrane structures, and the antioxidant system in the development of surgical sepsis in dogs.
Materials and Methods: Dogs with a provisional exclusion of sepsis were included in the study. The control group (Group 1) included clinically healthy dogs (n=5), and medium-breed dogs with systemic inflammation response syndrome (n=30) were categorized in the experimental group (Group 2). Along with hemogram and biochemical analysis, we determined the amount of malondialdehyde, glutathione, superoxide dismutase, catalase, glutathione reductase, and glucose-6-phosphate dehydrogenase on the 1st and 14th day of the study. Treatment included a thorough reorganization of the septic focus, followed by antibacterial therapy. Sick animals were injected with a drug (dexamethasone) that suppresses the synthesis and inhibits the action of inflammatory mediators. Decompensation of the functions of organs and systems was carried out using symptomatic therapy.
Results: We found that enhanced lipid peroxidation of unsaturated fatty acids of membrane structures stimulates the generalization of inflammatory process, as evidenced by the significant deviation from the physiologically normal values of lipid peroxidation, C-reactive protein, blood cell count, etc. The course of systemic inflammation associated with surgical sepsis in animals can be attributed to several consistently developing processes that function as a result of increased purine mononucleotide catabolism, peroxide compound formation, and their excessive breakdown in reactions associated with the consumption of glutathione due to the insufficient recovery of glutathione disulfide.
Conclusion: The amount of uric acid, glycosaminoglycans, hyaluronic acid in blood plasma, and the content of malondialdehyde, glutathione, and glutathione reductase in erythrocytes should be considered when assessing the severity of the systemic inflammatory process. The increased glutathione requirement in dogs with surgical sepsis requires intervention with pharmacological agents, and further research is needed in this aspect.
Keywords: dogs, purine mononucleotides, surgical sepsis.