doi: 10.14202/vetworld.2019.916-924
Share this article on [Facebook] [LinkedIn]
Article history: Received: 27-12-2018, Accepted: 15-04-2019, Published online: 28-06-2019
Corresponding author: Mas'ud Hariadi
E-mail: masudhariadi@yahoo.co.id
Citation: Safitri E, Hariadi M (2019) Comparison of biotechnological culture of hypoxia-conditioned rat mesenchymal stem cells with conventional in vitro culture of normoxia-conditioned rat mesenchymal stem cells for testicular failure therapy with low libido in rats, Veterinary World, 12(6): 916-924.Aim: Biotechnological culture of hypoxia-conditioned (CH) rat mesenchymal stem cells (rMSC-CH) for testicular failure therapy with low libido improves the functional outcome of the testicle for producing spermatogenic cells and repairs Leydig cells in rats (Rattus norvegicus).
Materials and Methods: In the first group (T1), rats with testicular failure and low libido were injected with normoxia-conditioned (CN) rMSCs (21% oxygen); in the second group (T2), rats with testicular failure and low libido were injected with rMSC-CH (1% oxygen); in the negative control group (T–), rats with normal testis were injected with 0.1 mL phosphate-buffered saline (PBS); and in the sham group (TS), rats with testicular failure and low libido were injected with 0.1 mL of PBS.
Results: Vascular endothelial growth factor expression, as the homing signal, in the groups T2, T–, T1, and TS was 2.00±0.5%, 2.95±0.4%, 0.33±0.48%, and 0±0%, respectively. The number of cluster of differentiation (CD)34+ and CD45+ cells in the groups T– and TS was <20%, whereas that in T1 and T2 groups was >30% and >80%, respectively, showing the mobilization of hematopoietic stem cells (HSCs). The number of spermatogenic cells (spermatogonia, primary spermatocytes, secondary spermatocytes, and spermatid) decreased significantly (p<0.05) in TS compared with that in T–, T1, and T2, whereas that in T2 did not show a significant (p>0.05) decrease compared to that in T–. The improvement in libido, based on the number of Leydig cells producing the hormone testosterone for libido expression, did not increase in T1, whereas T2 was able to maintain the number of Leydig cells significantly compared to that between TS and T1.
Conclusion: rMSC-CH culture for testicular failure with low libido showed improvement in the functional outcome of the testicle and in repairing Leydig cells.
Keywords: hypoxia-conditioned rat mesenchymal stem cells, low libido, normoxia-conditioned rat mesenchymal stem cells, rat, testicular failure.
1. Safitri E., Utama S., Widiyatno T. V., Sandhika W. and Prasetyo, R. H. (2016) Auto-regeneration of mice testicle seminiferous tubules due to malnutrition based on stem cells mobilization using honey. Asian Pac. J. Reprod., 5(1): 31-35. [Crossref]
2. Cakici C., Buyrukcu B., Duruksu G., Haliloglu A. H., Aksoy A., IsJk A., Uludag O., Ustun H., Subas J. C. and Karaoz E. (2013) Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. Bio. Med. Res. Int., 13(1): 1-18. [Crossref] [PubMed] [PMC]
3. Hafez E. S. E. and Hafez B. (2013) Reproduction in Farm Animals. 7th ed. Wiley-Blackwell, Philadelphia, PA, USA. 157-198.
4. Prasetyo R. H. and Safitri E. (2016) Effects of honey to mobilize endogenous stem cells in efforts intestinal and ovarian tissue regeneration in rats with protein-energy malnutrition. Asian Pac. J. Reprod., 5(3): 198-203. [Crossref]
5. Safitri E., Utama S., Bumi C., Mulyani S. W. M., Retnowati E., Prasetyo R. H., Hariadi M., Mahyudin F. and Rantam, F. A. (2014) Hypoxic preconditioning for viable and self-renewing mesenchymal stem cells (MSCs) as the regeneration of spermatogenesis process. Adv. Nat. Appl. Sci., 8(8): 42-46.
6. Safitri E., Utama S., Bumi C., Mulyani S. W. M., Susilowati H., Retnowati E., Purwati A., Prasetyo R. H., Hariadi M. and. Rantam F. A. (2013) The role of adaptive MSCs an attempt regeneration of spermatogenesis process using by hypoxia precondition in vitro. J. Anim. Prod. Adv., 3(11): 318-322.
7. Scaradavou A., Smith K. M., Hawke R., Schaible A., Abboud M., Kernan N. A., Young J.W. and Barker J. N. (2015) Cord blood units with low CD34+ cell viability have a low probability of engraftment after double-unit transplantation. Biol. Blood Marrow Transplant., 16(4): 500-508. [Crossref] [PubMed] [PMC]
8. Tsai C. C., Chen Y. J., Yew T. L., Chen L. L., Wang J. Y., Chiu C. H. and Hung S.C. (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood J. Hematol., 117(2): 459-469. [Crossref] [PubMed]
9. Mulyani S. W. M., Setiawati E. M., Safitri E. and Astuti E. R. (2014) The role of heat shock protein 27 (HSP 27) as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture. Dent. J. Maj. Ked. Gigi., 47(1): 41-44. [Crossref]
10. Szablowska-Gadomska I., Zayat V. and Buzanska L. (2011) Influence of low oxygen tension on expression of pluripotency genes in stem cells. Acta Neurobiol. Exp., 71(1): 86-93.
11. Cai B., Li, X., Wang N., Liu Y., Yang F., Chen H., Yin K., Tan X., Zhu J., Pan Z., Wang B. and Lu Y. (2013) Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal. PLoS One, 8(5): 1-9. [Crossref] [PubMed] [PMC]
12. Chen T. L., Zhu G. L., Wang J. A., Wang Y., He X. L. and Jiang J. (2014) Apoptosis of bone marrow mesenchymal stem cells caused by hypoxia/reoxygenation via multiple pathways. Int. J. Clin. Exp. Med., 7(12): 4686-4697.
13. Teixeira F. G., Panchalingam K. M., Anjo S. I., Manadas B., Pereira R., Sousa N., Salgado A. J. and Behie, L. A. (2015) Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton jelly mesenchymal stem cell secretome? Stem Cell Res. Ther., 6(2): 133-147. [Crossref] [PubMed] [PMC]
14. Qin H. H., Filippi C., Sun S., Lehec S., Dhawan A. and Hughes, R. D. (2015) Hypoxic preconditioning potentiates the trophic effects of mesenchymal stem cells on co-cultured human primary hepatocytes. Stem Cell Res. Ther., 7(4): 1-12. [Crossref] [PubMed] [PMC]
15. Zhou H., Li D., Shi C., Xin T., Yang J., Zhou Z., Hu S., Tian F., Wang J. and Chen Y. (2015) Effects of exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci. Rep., 5(12898): 1-12. [Crossref] [PubMed] [PMC]
16. Safitri E., Widiyatno T. V. and Prasetyo R. H. (2016) Honeybee product therapeutic as stem cells homing for ovary failure. Vet. World, 9(11): 1324-1330. [Crossref] [PubMed] [PMC]
17. Eleoterio R. B., Sepulveda R. V., Reis E. C. C., Valente F. L. and Borges A. P. B. (2016) Isolation, expansion and differentiation of mesenchymal stromal cells from rabbits' bone marrow. Pesq. Vet. Bras., 36(5): 423-430. [Crossref]
18. Hackbert L. and Heiman J. R. (2002) Acute dehydroepiandrosterone (DHEA) effect on sexual arousal in postmenopausal women. J. Womens Health Gend. Based Med., 11(2): 155-162. [Crossref] [PubMed]
19. Struct M. B., Andrutis K. A., Ramirez H. E. and Battles A.H. (2011) Effect of a short-term fast on ketamine-xylazine anesthesia in rats. J. Am. Assoc. Lab. Anim. Sci., 50(3): 344-348.
20. Kumar G. L. and Rudbeck L. (2009) Immunohistochemical Staining Methods. 5th ed. DAKO North America, Carpinteria CA, USA. 11-14.
21. Bushnel T. and Hanke I. (2014) Modern Flow Cytometry Ebook. Mission Ave Ste, Liberty Lake, United States. 123.
22. Razi M., Najafi G., Feyzi S., Karimi A., Shahmohamad S. and Nejati V. (2012) Histological and histochemical effects of Glyphosate on testicular tissue and function. Iran J. Reprod. Med., 10(3): 181-192.
23. Trapani M. D., Bassi G., Midolo M., Gatti A., Kamga P. T., Cassaro A., Carusone R., Adamo A. and Krampera M. (2016) Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Nat. Sci. Rep., 6(24120): 1-13. [Crossref] [PubMed] [PMC]
24. Kaundal U., Bagai U. and Rakha A. (2018) Immunomodulatory plasticity of mesenchymal stem cells: A potential key to successful solid organ transplantation. Rev. J. Transl. Med., 16(31): 1-16. [Crossref] [PubMed] [PMC]
25. Nejad N. A., Amidi F., Hoseini M. A., Nia K. N., Habibi M., Kajbafzadeh A. M., Mazaheri Z. and Yamini N. (2015) Male germ-like cell differentiation potential of human umbilical cord Wharton's jelly-derived mesenchymal stem cells in co-culture with human placenta cells in presence of BMP4 and retinoic acid. Iran J. Basic. Med. Sci., 18(4): 325-333.
26. Dennis E. A. and Bradshaw R. A. (2011) Intercellular Signaling in Development and Disease. 1st ed. Elsevier Inc., San Diego CA, USA. 121-129.
27. Jones D. L. and Wagers A. J. (2008) No place like home: Anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol., 9(1): 11-21. [Crossref] [PubMed]
28. Arai F., Hirao A., Ohmura M., Sato H., Matsuoka S., Takubo K., Ito K., Koh G. Y. and Suda T. (2007) Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cells quiescence in the bone marrow niche. Cell, 118(2): 149-161. [Crossref] [PubMed]
29. Maggio M., DeVita F., Lauretani F., Nouvenne A., Meschi T., Ticinesi A., Dominguez L. J., Barbagallo M., Dall'Aglio E. and Ceda G. P. (2014) Review article the interplay between magnesium and testosterone in modulating physical function in men. Int. J. Endocrinol. 2014(ID 525249): 1-9. [Crossref] [PubMed] [PMC]
30. Guyton A. and Hall J.E. (2013) Buku Ajar Fisiologi Kedokteran; Setiawan I. 12th ed. Penerbit Buku Kedokteran ECG, Jakarta, Indonesia. 1283-1288.
31. Marks D. B., Allan D. M. and Collen M. S. (2016) Biokmia Kedokteran Dasar. Sebuah Pendekatan Klinis. 2nd ed. Penerbit Buku Kedokteran ECG, Jakarta, Indonesia. 165-177.
32. Lehningger A. L. (2014) Dasar-Dasar Biokimia, Alih Bahasa Maggy Thenawidjaja. 1st ed. Penerbit Airlangga, Jakarta, Indonesia. 73-93.