Open Access
Research (Published online: 22-03-2019)
14. Nanoparticles of zinc oxide defeat chlorpyrifos-induced immunotoxic effects and histopathological alterations
Sara S. Essa, Eiman M. El-Saied, Osama S. El-Tawil, Inas M. Gamal and Sahar S. Abd El-Rahman
Veterinary World, 12(3): 440-448

Sara S. Essa: Immune Section, Research Institute for Animal Reproduction, Cairo, Egypt.
Eiman M. El-Saied: Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Egypt.
Osama S. El-Tawil: Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Egypt.
Inas M. Gamal: Immune Section, Research Institute for Animal Reproduction, Cairo, Egypt.
Sahar S. Abd El-Rahman: Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.

doi: 10.14202/vetworld.2019.440-448

Share this article on [Facebook] [LinkedIn]

Article history: Received: 02-12-2018, Accepted: 28-01-2019, Published online: 22-03-2019

Corresponding author: Sahar S. Abd El-Rahman

E-mail: saharsamirmah@cu.edu.eg

Citation: Essa SS, El-Saied EM, El-Tawil OS, Gamal IM, Abd El-Rahman SS (2019) Nanoparticles of zinc oxide defeat chlorpyrifos-induced immunotoxic effects and histopathological alterations, Veterinary World, 12(3): 440-448.
Abstract

Background and Aim: Chlorpyrifos (CPF) is a widely used organophosphate insecticide. Nanoparticles of zinc oxide (ZnO NPs) physically showed effective adsorbing property for some insecticides. The study was conducted to estimate the potential effect of ZnO NPs against CPF toxicity.

Materials and Methods: Four groups of male rats were used; control group and three groups received drinking water contained 75 mg/L CPF, combined 75 mg/L CPF and 200 mg/L ZnO NPs, and 200 mg/L ZnO NPs, respectively.

Results: CPF significantly decreased macrophage activity, serum lysozyme activity, and levels of interleukin-2 (IL-2) and IL-6; increased the percentage of DNA degeneration on comet assay of lymphocytes and significantly elevated hepatic and splenic malondialdehyde contents; and decreased their glutathione contents. The liver and spleen showed marked histological alterations after exposure to CPF with decreased expression of acetylcholinesterase. The coadministration of ZnO NPs ameliorated most of the undesirable effects of CPF, through elevation of macrophage and serum lysozyme activities, increased the levels of IL-2 and IL-6, corrected the oxidative stress markers, and alleviated most of the adverse effect exerted by CPF in liver and spleen tissues.

Conclusion: The addition of ZnO NPs to CPF-contaminated drinking water may be useful as a powerful antioxidant agent against toxic damage induced by CPF particularly in individuals who are on daily occupational exposure to low doses of CPF.

Keywords: acetylcholinesterase, chlorpyrifos, immune system, pathology, zinc oxide nanoparticles.

References

1. Carvalho, F.P. (2017) Pesticides, environment, and food safety. Food Energy Secur., 6(2): 48-60. [Crossref]

2. LaKind, J.S., Sobus, J.R., Goodman, M., Barr, D. B., Furst, P., Albertini, R.J., Arbuckle, T.E., Schoeters, G., Tan, Y.M., Teeguarden, J., Tornero-Velez, R. and Weisel, C.P. (2014) A proposal for assessing study quality: Biomonitoring, environmental epidemiology, and short-lived chemicals (BEES-C) instrument. Environ. Int., 73(12): 195-207. [Crossref] [PubMed] [PMC]

3. Antonio, V., Sergio, H., Martha, R. and Irmene, O. (2014) Detection of residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region of San Luis Potosi, Mexico. J. Environ. Sci. Health B., 49(7): 498-504. [Crossref] [PubMed]

4. Duirk, S.E., Desetto, L.M. and Davis, G.M. (2009) Transformation of organophosphorus pesticides in the presence of aqueous chlorine: Kinetics, pathways, and structure-activity relationships. Environ. Sci. Technol., 43(7): 2335-2340. [Crossref]

5. Lee, I., Eriksson, P., Fredriksson, A., Buratovic, S. and Viberg, H. (2015) Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicol. Appl. Pharmacol., 288(3): 429-438. [Crossref] [PubMed]

6. Shannon, M.A. (2008) Science and technology for water purification in the coming decades. Nature, 452(7185): 301-310. [Crossref] [PubMed]

7. Yang, H.Y. (2013) Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun., 4(8): 2220-2221. [Crossref] [PubMed]

8. Yuan, J. (2008) Super wetting nanowire membranes for selective absorption. Nat. Nanotechnol., 3(6): 332-336. [Crossref] [PubMed]

9. Shahram, M.D., Bahar, R., Ali, M.M.; Parviz, A.A. (2014) Removal of permethrin pesticide from water by chitosan zinc oxide nanoparticles composite as an adsorbent. J. Saudi Chem. Soc., 18(4): 348-355. [Crossref]

10. USEPA. (2000) Toxicology Chapter for Chlorpyrifos. A Report of United State Environmental Protection Agency, Washington DC 20460: 1-52 USA.

11. Kim, Y.R, Park, J.I, Lee, E.J., Park, S.H., Seong, N.W., Kim, J.H., Kim, G.Y., Meang, E.H., Hong, J.S., Kim, S.H, Koh, S.B. and Kim, M.S. (2014) Toxicity of 100 nm zinc oxide nanoparticles: A report of 90 days repeated oral administration in Sprague Dawley rats. Int. J. Nanomed., 9(2): 109-126. [PubMed] [PMC]

12. Rajarman, V., Nonnecke, B., Franklin, S., Hamell, D. and Horst, R. (1998) Effect of Vitamin A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed on milk replacer. J. Dairy Sci., 81(12): 3278-3285. [Crossref]

13. Tice, R.R, Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J.C. and Sasaki, Y.F. (2000) Single cell gel/ comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen., 35(3): 206-221. [Crossref]

14. Schultz, L.A. (1987) Lysozyme. In: Methods in Clinical Chemistry. Pesce, A.J. and Kaplan, L.A., editors. Mosby, St, Louis. p742-746.

15. Goldsmith, M.A. and Greene, W.C. (1994) In: Thomson, A., editor. The Cytokine Handbook. 2nd ed. Academic Press, New York. p57-66.

16. Hirano, T. (1998) "Interleukin 6" in The Cytokine Handbook. 3rd ed. Academic Press, New York. p197-210.

17. Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys., 82(1): 70-77. [Crossref]

18. Ruiz-Larrea, M.B., Leal, A.M., Liza, M., Lacort, M. and de Groot, H. (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids, 59(6): 383-388. [Crossref]

19. Bancroft, J.D. and Gamble, M. (2008) Theory and Practice of Histological Techniques. 6th ed. Churchill Livingstone, Elsevier, China.

20. Hsu, S.M., Raine, L. and Fanger, H. (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. J. Clin. Pathol., 75(6): 816-821. [Crossref]

21. Xu, M.Y., Sun, Y.J. and Wang, P. (2015) Metabolomics analysis and biomarker identification for brains of rats exposed subchronically to the mixtures of low-dose cadmium and chlorpyrifos. Chem. Res. Toxicol., 28(6): 1216-1223. [Crossref] [PubMed]

22. Akan, J.C, Jafiya, L., Mohammed, Z. and Abdulrahman, A. (2013) Organophosphorus pesticide residues in vegetables and soil samples from Alau dam and Gongulong agricultural areas, Borno State, Nigeria. Int. J. Environ. Monit. Anal., 1(2): 58-64. [Crossref]

23. Al-Naggar, Y., Codling, G., Vogt, A., Naiem, E., Mohamed, M., Seif, A. and John, P. (2015) Organophosphorus insecticides in honey pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt. Ecotoxicol. Environ. Saf., 114(1): 1-8. [Crossref] [PubMed]

24. Gultekin, F., Patat, S., Akca, M. and Akdogan, M. (2006) Melatonin can suppress the cytotoxic effect of chlorpyrifos on human Hep G2 cell lines. Hum. Exp. Toxicol., 35(2): 47-55. [Crossref] [PubMed]

25. Uchendu, C., Ambali, S.F., Ayo, J.O. and Esievo, K.A. (2011) Acetyl-L-carnitine attenuates haemotoxicity induced by subacute chlorpyrifos exposure in Wistar rats. Der. Pharm. Let., 3(2): 292-303.

26. Hamza, R.Z., Diab, A.Z., Abd El-Aziz, E.A. and Hendawy, A.A. (2013) Immunotoxic effect of organophosphorus insecticides chlorpyrifos, profenofos, and possible ameliorative role of propolis and ginseng. Biosci. Biotech. Res. Asia, 10(2): 645-651. [Crossref]

27. Mansour, S.A., Abbassy, M.A. and Shaldam, H.A. (2017) Hepato-renal toxicity induced by chlorpyrifos, diazinon and their mixture to male rats with special concern to the effect of zinc supplementation. J. Toxicol. Pharmacol., 1(3): 15-24.

28. Wang, P., Wang, J., Sun, Y., Yang, L. and Wu, Y. (2017) Cadmium and chlorpyrifos inhibit cellular immune response in spleen of rats. Environ. Toxicol., 32(7): 1927-1936. [Crossref] [PubMed]

29. Shittu, M., Ayo, J.O. and Ambali, S.F. (2012) Chronic chlorpyrifos-induced oxidative changes in the testes and pituitary gland of Wistar rats: Ameliorative effects of Vitamin C. Pestic. Biochem. Physiol., 102(1): 79-85. [Crossref]

30. Lee, Y.S., Lewis, J.A., Ippolito, D.L., Hussainzada, N., Lein, P.J., Jackson, D.A. and Stallings, J.D. (2016) Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides. Toxicology, 340(1): 53-62. [Crossref] [PubMed] [PMC]

31. Mansour, S.A. and Mossa, A.H. (2010) Oxidative damage, biochemical and histological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pestic. Biochem. Physiol., 96(1): 14-23. [Crossref]

32. Henney, C.S., Kuribayashi, K., Kern, D.E. and Gillis, S. (1981) IL-2 augments natural killer cell activity. Nature, 291(5813): 335-338. [Crossref]

33. Gajewski, T.F., Joyce, J. and Fitch, F.W. (1989) Anti-proliferative effect of IFN-gamma in immune regulation. III. Differential selection of TH1 and TH2 murine helper T-lymphocyte clones using recombinant IL-2 and recombinant IFN. J. Immunol., 143(1): 15-22. [PubMed]

34. Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R. and Sabzevari, O. (2003) Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of Malathion in blood and liver of rats. Hum. Exp. Toxicol., 22(4): 205-211. [Crossref] [PubMed]

35. Abdollahi, M., Mostafalou, S., Pournourmohammadi, S. and Shadnia, S. (2004) Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to Malathion. Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 137(1): 29-34. [Crossref] [PubMed]

36. Verma, R.S., Mehta, A. and Srivastava, N. (2007) In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pestic. Biochem. Physiol., 88(1): 191-196. [Crossref]

37. Kalender, Y., Kaya, S. and Durak, D. (2012) Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ. Toxicol. Pharmacol., 33(2): 141-148. [Crossref] [PubMed]

38. Powell, S.R. (2000) The antioxidant properties of zinc. J. Nutr., 130(5S): 1447S-1454S. [Crossref] [PubMed]

39. Brown, S.S., Kalow, W., Pilz, W., Whittaker, M. and Woronick, C.L. (1981) The plasma cholinesterases: A new perspective. Adv. Clin. Chem., 22(3): 1-123. [Crossref]

40. Moss, D.M, Henderson, A.R. and Tietz, T. (1999) Textbook of Clinical Enzymology, Clinical Enzymology. In: Burtis, C.A. and Ashwood, E.R., editors. WB Saunders Co, Philadelphia, PA, USA. p617-721.

41. Zheng, Q., Oliver, K., Won, Y.K. and Pope, C.N. (2000) Comparative cholinergic neurotoxicity of chlorpyrifos exposure in pre-weaning and adult rats. Toxicol. Sci., 55(1): 124-132. [Crossref]

42. An, X., Ji, X., Wu, M., Hu, X., Yu, R., Zhao, X., and Cai, L. (2014) Risk assessment of applicators to chlorpyrifos through dermal contact and inhalation at different maize plant heights in China. J. Agric. Food Chem., 62(29): 7072-7077. [Crossref] [PubMed]

43. Rengarag, S., Moon, S.H. and Sivabalan, R. (2002) Agricultural solid waste for the removal of organics from water and waste water by palm seed coated activated carbon, Waste Manage., 22(5): 543-548. [Crossref]

44. Cruz, K.J., Morai, J.B., de Oliveira, A.R., Severo, J.S. and Marreiro, D.N. (2017) The effect of zinc supplementation on insulin resistance in obese subjects: A systematic review. Biol. Trace Elem. Res., 176(2): 239-243. [Crossref] [PubMed]

45. Soheili, S., Saeed, M., Attaollah, S. and Masoud, G. (2013) Histopathological effects of ZnO nanoparticles on liver and heart tissues in Wistar rats. Adv. Biores., 4(2): 83-88.

46. Amara, S., Ben-Slama, I., Mrad, I., Rihane, N. and Jeljeli, M. (2014) Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats. Nanotoxicology, 8(Suppl 1): 208-215. [Crossref] [PubMed]