Open Access
Research (Published online: 21-05-2019)
10. Detection and characterization of clustered regularly interspaced short palindromic repeat-associated endoribonuclease gene variants in Vibrio parahaemolyticus isolated from seafoods and environment
Pallavi Baliga, Malathi Shekar and Moleyur Nagarajappa Venugopal
Veterinary World, 12(5): 689-695

Pallavi Baliga: Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, Karnataka, India.
Malathi Shekar: Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, Karnataka, India.
Moleyur Nagarajappa Venugopal: Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore, Karnataka, India.

doi: 10.14202/vetworld.2019.689-695

Share this article on [Facebook] [LinkedIn]

Article history: Received: 14-11-2018, Accepted: 26-03-2019, Published online: 21-05-2019

Corresponding author: Malathi Shekar

E-mail: malathishekar@rediffmail.com

Citation: Baliga P, Shekar M, Venugopal MN (2019) Detection and characterization of clustered regularly interspaced short palindromic repeat-associated endoribonuclease gene variants in Vibrio parahaemolyticus isolated from seafoods and environment, Veterinary World, 12(5): 689-695.
Abstract

Aim: In Vibrio parahaemolyticus, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated cas6 endoribonuclease gene has been shown to exhibit sequence diversity and has been subtyped into four major types based on its length and composition. In this study, we aimed to detect and characterize the cas6 gene variants prevalent among V. parahaemolyticus strains isolated from seafoods and environment.

Materials and Methods: Novel primers were designed for each of the cas6 subtypes to validate their identification in V. parahaemolyticus by polymerase chain reaction (PCR). In total, 38 V. parahaemolyticus strains isolated from seafoods and environment were screened for the presence of cas6 gene. Few representative PCR products were sequenced, and their phylogenetic relationship was established to available cas6 gene sequences in GenBank database.

Results: Of the 38 V. parahaemolyticus isolates screened, only about 40% of strains harbored the cas6 endoribonuclease gene, among which 31.6% and 7.9% of the isolates were positive for the presence of the cas6-a and cas6-d subtypes of the gene, respectively. The subtypes cas6-b and cas6-c were absent in strains studied. Sequence and phylogenetic analysis also established the cas6 sequences in this study to match GenBank sequences for cas6-a and cas6-d subtypes.

Conclusion: In V. parahaemolyticus, the Cas6 endoribonuclease is an associated protein of the CRISPR-cas system. CRISPR-positive strains exhibited genotypic variation for this gene. Primers designed in this study would aid in identifying the cas6 genotype and understanding the role of these genotypes in the CRISPR-cas immune system of the pathogen.

Keywords: cas6 gene, clustered regularly interspaced short palindromic repeats-cas operon, endoribonuclease, type IF system, Vibrio parahaemolyticus.

References

1. Morris, J. and Black, R. (1985) Cholera and other vibrioses in the United States. N. Engl. J. Med., 312(6): 343-350. [Crossref] [PubMed]

2. Li, H., Tang, R., Lou, Y., Cui, Z., Chen, W., Hong, Q., Zhang, Z., Malakar, P.K., Pan, Y. and Zhao, Y. (2017) A comprehensive epidemiological research for clinical Vibrio parahaemolyticus in Shanghai. Front. Microbiol., 8: 1043. [Crossref] [PubMed] [PMC]

3. Ghenem, L., Elhadi, N., Alzahrani, F. and Nishibuchi, M. (2017) Vibrio parahaemolyticus: A review on distribution, pathogenesis, virulence determinants and epidemiology. Saudi J. Med. Sci., 5(2): 93-103.

4. Paranjpye, R., Hamel, O.S., Stojanovski, A. and Liermann, M. (2012) Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest. Appl. Environ. Microbiol., 78(24): 8631-8638. [Crossref] [PubMed] [PMC]

5. Wang, R., Zhong, Y., Gu, X., Yuan, J., Saeed, A.F. and Wang, S. (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front. Microbiol., 6: 144. [Crossref]

6. Raghunath, P. (2015) Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front. Microbiol., 5: 805. [Crossref] [PubMed] [PMC]

7. Sun, H., Li, Y., Shi, X., Lin, Y., Qiu, Y., Zhang, J., Liu, Y., Jiang, M., Zhang, Z., Chen, Q., Sun, Q. and Hu, Q. (2015) Association of CRISPR/Cas evolution with Vibrio parahaemolyticus virulence factors and genotypes. Food Borne Pathog. Dis., 12(1): 68-73. [Crossref] [PubMed]

8. Carte, J., Pfister, N., Compton, M.M., Terns, R.M. and Terns, M.P. (2010) Binding and cleavage of CRISPR RNA by cas6. RNA, 16(11): 2181-2188. [Crossref] [PubMed] [PMC]

9. Sokolowski, R.D., Graham, S. and White, M.F. (2014) Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system. Nucleic Acids Res., 42(10): 6532-6541. [Crossref] [PubMed] [PMC]

10. Hille, F. and Charpentier, E. (2016) CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans. R. Soc. B. 371(1707): 20150496. [Crossref] [PubMed] [PMC]

11. Rath, D., Amlinger, L., Rath, A. and Lundgren, M. (2015) The CRISPR-cas immune system: Biology, mechanisms and applications. Biochimie, 117: 119-128. [Crossref] [PubMed]

12. Wakefield, N., Rajan, R. and Sontheimer, E.J. (2015) Primary processing of CRISPR RNA by the endonuclease cas6 in Staphylococcus epidermidis. FEBS Lett., 589(20): 3197-3204. [Crossref] [PubMed] [PMC]

13. Brendel, J., Stoll, B., Lange, S.J., Sharma, K., Lenz, C., Stachler, A.E., Maier, L.K., Richter, H., Nickel, L., Schmitz, R.A., Randau, L., Allers, T., Urlaub, H., Backofen, R. and Marchfelder, A. (2014) A complex of cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii. J. Biol. Chem., 289(10): 7164-7177. [Crossref] [PubMed] [PMC]

14. Horvath, P. and Barrangou, R. (2010) CRISPR/Cas the immune system of bacteria and archaea. Science, 327(5962): 167-170. [Crossref] [PubMed]

15. Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A. and Saunders, S.J. (2015) An updated evolutionary classification of CRISPR-cas systems. Nat. Rev. Microbiol., 13(11): 722-736. [Crossref] [PubMed] [PMC]

16. Charpentier, E., Richter, H., van der Oost, J. and White, M.F. (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev., 39(3): 428-441. [Crossref] [PubMed] [PMC]

17. Sternberg, S.H., Haurwitz, R.E. and Doudna, J.A. (2012) Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA, 18(4): 661-672. [Crossref] [PubMed] [PMC]

18. Wang, R. and Li, H. (2012) The mysterious RAMP proteins and their roles in small RNA-based immunity. Protein Sci., 21(4): 463-470. [Crossref] [PubMed] [PMC]

19. Carte, J., Christopher, R.T., Smith, J.T., Olson, S., Barrangou, R., Moineau, S., Glover, C.V. 3rd, Graveley, B.R., Terns, R.M. and Terns, M.P. (2014) The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol. Microbiol., 93(1): 98-112. [Crossref] [PubMed] [PMC]

20. Baliga, P., Shekar, M. and Venugopal, M.N. (2018) Investigation of direct repeats, spacers and proteins associated with clustered regularly interspaced short palindromic repeat (CRISPR) system of Vibrio parahaemolyticus. Mol. Genet. Genomics, 294(1):253-262. [Crossref] [PubMed]

21. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M. and Rozen, S.G. (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res., 40(15): e115. [Crossref] [PubMed] [PMC]

22. Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res., 16(22): 10881-10890. [Crossref] [PubMed] [PMC]

23. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28(10): 2731-2739. [Crossref] [PubMed] [PMC]

24. Gleditzsch, D., Muller-Esparza, H., Pausch, P., Sharma, K., Dwarakanath, S., Urlaub, H., Bange, G. and Randau, L. (2016) Modulating the cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res., 44(12): 5872-5882. [Crossref] [PubMed] [PMC]

25. Wang, R., Preamplume, G., Terns, M.P., Terns, R.M. and Li, H. (2011) Interaction of the cas6 riboendonuclease with CRISPR RNAs: Recognition and cleavage. Structure, 19(2): 257-264. [Crossref] [PubMed] [PMC]

26. Pourcel, C. and Drevet, R.C. (2013) Occurrence, diversity of CRISPR-Cas systems and genotyping implications. In: Barrangou, R. and van der Oost, J., editors. CRISPR-Cas Systems. Springer-Verlag, Berlin Heidelberg. p33-59.

27. Haurwitz, R.E., Jinek, M., Wiedenhef, B., Zhou, K. and Doudna, J.A. (2010) Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science, 329(5997): 1355-1358. [Crossref] [PubMed] [PMC]

28. Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin E.V. and van der Oost J. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891): 960-964. [Crossref] [PubMed] [PMC]

29. Niewoehner, O., Jinek, M. and Doudna, J.A. (2014) Evolution of CRISPR RNA recognition and processing by cas6 endonucleases. Nucleic Acids Res., 42(2): 1341-1353. [Crossref] [PubMed] [PMC]

30. Takeuchi, N., Wolf, Y.I., Makarova, K.S. and Koonin, E.V. (2012) Nature and intensity of selection pressure on CRISPR-associated genes. J. Bacteriol., 194(5): 1216-1225. [Crossref] [PubMed] [PMC]