Vet World   Vol.13   February-2020  Article-10

Research Article

Veterinary World, 13(2): 290-295

https://doi.org/10.14202/vetworld.2020.290-295

Resistance to multiple first-line antibiotics among Escherichia coli from poultry in Western Algeria

Meki Boutaiba Benklaouz1,2, Hebib Aggad1,2, and Qada Benameur3
1. Department of Veterinary Sciences, Veterinary Sciences Institute, Ibn Khaldoun University, Tiaret, Algeria.
2. Laboratory of Hygiene and Animal Pathology, Veterinary Sciences Institute, Ibn Khaldoun University, Tiaret, Algeria.
3. Nursing Department, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University, Mostaganem, Algeria.

Background and Aim: Escherichia coli can cause a number of serious infections both in human and veterinary medicine. Their management is increasingly complicated by the emergence and dissemination of multiresistance to various first-line antimicrobial agents. This study aimed to evaluate the resistance level to the commonly used antibiotics, with a focus on the first-line antimicrobial agents, in E. coli strains isolated from poultry in Western Algeria.

Materials and Methods: E. coli culture was done on MacConkey agar and their identification was determined by AP20E system. For susceptibility testing, disk diffusion method to 14 antimicrobials, including first-line antibiotics, was used according to Kirby–Bauer disk diffusion method in Mueller-Hinton agar and the results were interpreted according to the Clinical and Laboratory Standards Institute guidelines. E. coli isolates were considered as multidrug resistance (MDR) when found resistant to at least one antimicrobial agent of three different families of antibiotics. Double-disk synergy and combination disk tests were used for initial screening and confirmation for extended-spectrum β-lactamases (ESBLs) production, respectively.

Results: A total of 145 E. coli strains were isolated in this study. High resistance levels to various antibiotics, including commonly used first-line antimicrobial agents, were recorded in this study. The highest resistance level was observed against nalidixic acid (90.34%, n=131), followed by tetracycline (86.89%, n=126), ampicillin (82.75%, n=120), enrofloxacin (80.68%, n=117) and neomycin (80.68%, n=117), trimethoprim/sulfamethoxazole (73.79%, n=107), norfloxacin (72.41%, n=105) and cephalothin (72.41%, n=105), amoxicillin/clavulanic acid (51.72%, n=75), chloramphenicol (22.75%, n=33), nitrofurantoin (17.24%, n=25), gentamicin (13.10%, n=19), and ceftiofur (3.44%, n=5). Moreover, resistance to multiple first-line antibiotics was also demonstrated in the present study. Overall, 139 out of 145 isolates (95.86%) demonstrated MDR (resistant to at least three antibiotics). In addition, five E. coli isolates (3.44%) were confirmed to be ESBL producers.

Conclusion: The alarming rate of E. coli resistant to multiple first-line antibiotics in poultry demands intensified surveillance. These results call for taking drastic measures to preserve antibiotic effectiveness and reduce the emergence risks of extensively drug-resistant and pandrug-resistant E. coli isolates. Keywords: Algeria, Escherichia coli, extended-spectrum β-lactamases, first-line antibiotics, multidrug resistance, poultry.

Keywords: Algeria, Escherichia coli, extended-spectrum β-lactamases, first-line antibiotics, multidrug resistance, poultry.

How to cite this article: Boutaiba Benklaouz M, Aggad H, Benameur Q (2020) Resistance to multiple first-line antibiotics among Escherichia coli from poultry in Western Algeria, Veterinary World, 13(2): 290-295.

Received: 07-10-2019  Accepted: 08-01-2020     Published online: 15-02-2020

Corresponding author: Qada Benameur   E-mail: qada.benameur@univ-mosta.dz

DOI: 10.14202/vetworld.2020.290-295

Copyright: Boutaiba Benklaouz, et al. This article is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.